Getal & Ruimte (12e editie) - havo wiskunde B

'Goniometrische vergelijkingen'.

havo wiskunde B 8.4 Goniometrische vergelijkingen

Goniometrische vergelijkingen (7)

opgave 1

Bereken zo mogelijk exact de oplossingen in \([0, 2\pi ]\text{.}\)

3p

a

\(\sin(1\frac{1}{2}x+\frac{1}{6}\pi )=0\)

ExacteWaarde (0)
004f - Goniometrische vergelijkingen - basis - 52ms - dynamic variables

a

De exacte waardencirkel geeft
\(1\frac{1}{2}x+\frac{1}{6}\pi =k⋅\pi \)

1p

\(1\frac{1}{2}x=-\frac{1}{6}\pi +k⋅\pi \)
\(x=-\frac{1}{9}\pi +k⋅\frac{2}{3}\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=\frac{5}{9}\pi ∨x=1\frac{2}{9}\pi ∨x=1\frac{8}{9}\pi \)

1p

4p

b

\(5\cos(2x+\frac{5}{6}\pi )=-2\frac{1}{2}\)

ExacteWaarde (1)
004g - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

b

Balansmethode geeft \(\cos(2x+\frac{5}{6}\pi )=-\frac{1}{2}\text{.}\)

1p

De exacte waardencirkel geeft
\(2x+\frac{5}{6}\pi =\frac{2}{3}\pi +k⋅2\pi ∨2x+\frac{5}{6}\pi =-\frac{2}{3}\pi +k⋅2\pi \)

1p

\(2x=-\frac{1}{6}\pi +k⋅2\pi ∨2x=-1\frac{1}{2}\pi +k⋅2\pi \)
\(x=-\frac{1}{12}\pi +k⋅\pi ∨x=-\frac{3}{4}\pi +k⋅\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=\frac{11}{12}\pi ∨x=1\frac{11}{12}\pi ∨x=\frac{1}{4}\pi ∨x=1\frac{1}{4}\pi \)

1p

4p

c

\(2\cos(\frac{3}{4}t-\frac{1}{4}\pi )=-\sqrt{2}\)

ExacteWaarde (2)
004h - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

c

Balansmethode geeft \(\cos(\frac{3}{4}t-\frac{1}{4}\pi )=-\frac{1}{2}\sqrt{2}\text{.}\)

1p

De exacte waardencirkel geeft
\(\frac{3}{4}t-\frac{1}{4}\pi =\frac{3}{4}\pi +k⋅2\pi ∨\frac{3}{4}t-\frac{1}{4}\pi =1\frac{1}{4}\pi +k⋅2\pi \)

1p

\(\frac{3}{4}t=\pi +k⋅2\pi ∨\frac{3}{4}t=1\frac{1}{2}\pi +k⋅2\pi \)
\(t=1\frac{1}{3}\pi +k⋅2\frac{2}{3}\pi ∨t=2\pi +k⋅2\frac{2}{3}\pi \)

1p

\(t\) in \([0, 2\pi ]\) geeft \(t=1\frac{1}{3}\pi ∨t=2\pi \)

1p

4p

d

\(4\sin(\frac{1}{5}\pi x+\frac{1}{3}\pi )=2\sqrt{3}\)

ExacteWaarde (3)
006x - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

d

Balansmethode geeft \(\sin(\frac{1}{5}\pi x+\frac{1}{3}\pi )=\frac{1}{2}\sqrt{3}\text{.}\)

1p

De exacte waardencirkel geeft
\(\frac{1}{5}\pi x+\frac{1}{3}\pi =\frac{1}{3}\pi +k⋅2\pi ∨\frac{1}{5}\pi x+\frac{1}{3}\pi =\frac{2}{3}\pi +k⋅2\pi \)

1p

\(\frac{1}{5}\pi x=k⋅2\pi ∨\frac{1}{5}\pi x=\frac{1}{3}\pi +k⋅2\pi \)
\(x=k⋅10∨x=1\frac{2}{3}+k⋅10\)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=0∨x=1\frac{2}{3}\)

1p

opgave 2

Bereken zo mogelijk exact de oplossingen in \([0, 2\pi ]\text{.}\)

4p

\(4+2\sin(4x+\frac{1}{2}\pi )=6\)

ExacteWaarde (4)
006y - Goniometrische vergelijkingen - basis - 1ms - dynamic variables

Balansmethode geeft \(2\sin(4x+\frac{1}{2}\pi )=2\) dus \(\sin(4x+\frac{1}{2}\pi )=1\text{.}\)

1p

De exacte waardencirkel geeft
\(4x+\frac{1}{2}\pi =\frac{1}{2}\pi +k⋅2\pi \)

1p

\(4x=k⋅2\pi \)
\(x=k⋅\frac{1}{2}\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=0∨x=\frac{1}{2}\pi ∨x=\pi ∨x=1\frac{1}{2}\pi ∨x=2\pi \)

1p

opgave 3

Los exact op.

3p

a

\(\cos^2(2x-\frac{3}{5}\pi )=1\)

Kwadraat
006z - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

a

\(\cos(2x-\frac{3}{5}\pi )=1∨\cos(2x-\frac{3}{5}\pi )=-1\)

1p

De exacte waardencirkel geeft
\(2x-\frac{3}{5}\pi =k⋅2\pi ∨2x-\frac{3}{5}\pi =\pi +k⋅2\pi \)

1p

\(2x=\frac{3}{5}\pi +k⋅2\pi ∨2x=1\frac{3}{5}\pi +k⋅2\pi \)
\(x=\frac{3}{10}\pi +k⋅\pi ∨x=\frac{4}{5}\pi +k⋅\pi \)

1p

3p

b

\(\frac{2}{5}\cos(\frac{4}{5}t+\frac{1}{6}\pi )\cos(1\frac{1}{2}t-\frac{5}{6}\pi )=0\)

ProductIsNul
0070 - Goniometrische vergelijkingen - basis - 1ms - dynamic variables

b

\(\cos(\frac{4}{5}t+\frac{1}{6}\pi )=0∨\cos(1\frac{1}{2}t-\frac{5}{6}\pi )=0\)

1p

De exacte waardencirkel geeft
\(\frac{4}{5}t+\frac{1}{6}\pi =\frac{1}{2}\pi +k⋅\pi ∨1\frac{1}{2}t-\frac{5}{6}\pi =\frac{1}{2}\pi +k⋅\pi \)

1p

\(\frac{4}{5}t=\frac{1}{3}\pi +k⋅\pi ∨1\frac{1}{2}t=1\frac{1}{3}\pi +k⋅\pi \)
\(t=\frac{5}{12}\pi +k⋅1\frac{1}{4}\pi ∨t=\frac{8}{9}\pi +k⋅\frac{2}{3}\pi \)

1p

"