Getal & Ruimte (12e editie) - havo wiskunde B

'Lineaire formules'.

2 havo/vwo 3.vk Grafiek bij formule

Lineaire formules (2)

opgave 1

Gegeven is de formule \(y=-4x-6\text{.}\)

1p

Bereken de waarde van \(y\) die hoort bij \(x=9\text{.}\)

FormuleBerekenen
00mx - Lineaire formules - basis - basis - dynamic variables

Het invullen van \(x=9\) geeft
\(y=-4⋅9-6=-36-6=-42\text{.}\)

1p

opgave 2

Gegeven is de formule \(y=9x-3\text{.}\)

3p

Teken de bijbehorende grafiek.

Tekenen (1)
00n0 - Lineaire formules - basis - midden - dynamic variables

Het is een lineaire formule, dus de grafiek is een lijn.

x

\(0\)

\(5\)

y

\(-3\)

\(42\)

1p

0123456-100102030405060xy

2p

2 havo/vwo 3.1 Grafieken van lineaire formules

Lineaire formules (2)

opgave 1

Gegeven is de formule \(y=4x-7\text{.}\)

1p

Controleer of het punt \(A(6, 17)\) op de grafiek van \(y=4x-7\) ligt.

LigtPuntOpLijn
00mz - Lineaire formules - basis - eind - dynamic variables

Het invullen van \(x=6\) geeft
\(y=4⋅6-7=17\text{,}\) dus het punt \(A\) ligt op de grafiek.

1p

opgave 2

Gegeven is de formule \(y=\frac{3}{4}x-1\text{.}\)

3p

Teken de bijbehorende grafiek.

Tekenen (2)
00n1 - Lineaire formules - basis - eind - data pool: #122 (2ms) - dynamic variables

Het is een lineaire formule, dus de grafiek is een lijn.

x

\(0\)

\(4\)

y

\(-1\)

\(2\)

1p

0123456-101234xy

2p

2 havo/vwo 3.2 De formule van een lijn opstellen

Lineaire formules (4)

opgave 1

Geef de richtingscoëfficiënt en het snijpunt met de \(y\text{-}\)as van de volgende lijnen.

2p

a

\(y=-2x+4\)

Eigenschappen (1)
00n4 - Lineaire formules - gevorderd - midden

a

Omschrijven naar de standaardvorm \(y=ax+b\) geeft
\(y=-2⋅x+4\text{.}\)

1p

De richtingscoëfficiënt is \(-2\) en het snijpunt met de \(y\text{-}\)as is \((0, 4)\text{.}\)

1p

2p

b

\(y=x\)

Eigenschappen (2)
00n5 - Lineaire formules - gevorderd - eind

b

Omschrijven naar de standaardvorm \(y=ax+b\) geeft
\(y=1⋅x+0\text{.}\)

1p

De richtingscoëfficiënt is \(1\) en het snijpunt met de \(y\text{-}\)as is \((0, 0)\text{.}\)

1p

2p

c

\(y=-1\)

Eigenschappen (3)
00n6 - Lineaire formules - gevorderd - eind

c

Omschrijven naar de standaardvorm \(y=ax+b\) geeft
\(y=0⋅x-1\text{.}\)

1p

De richtingscoëfficiënt is \(0\) en het snijpunt met de \(y\text{-}\)as is \((0, -1)\text{.}\)

1p

2p

d

\(y=4+3x\)

Eigenschappen (4)
00n7 - Lineaire formules - gevorderd - eind

d

Omschrijven naar de standaardvorm \(y=ax+b\) geeft
\(y=3⋅x+4\text{.}\)

1p

De richtingscoëfficiënt is \(3\) en het snijpunt met de \(y\text{-}\)as is \((0, 4)\text{.}\)

1p

2 havo/vwo 3.4 Vergelijkingen oplossen

Lineaire formules (1)

opgave 1

Gegeven zijn de lijnen \(k{:}\,y=7x-69\) en \(l{:}\,y=3x-33\text{.}\)

3p

Bereken de coördinaten van het snijpunt \(S\) van de lijnen \(k\) en \(l\text{.}\)

SnijpuntTweeLijnen
00mw - Lineaire formules - basis - eind

Gelijkstellen geeft
\(7x-69=3x-33\)
\(4x=36\)
\(x=9\text{.}\)

1p

Invullen geeft
\(\begin{rcases}y=7x-69 \\ x=9\end{rcases}\begin{matrix}y=7⋅9-69 \\ y=-6\end{matrix}\)

1p

Dus \(S(9, -6)\text{.}\)

1p

3 havo 1.4 Snijpunten van grafieken

Lineaire formules (2)

opgave 1

Gegeven is de formule \(y=4x+1\text{.}\)

3p

Bereken exact de coördinaat van het snijpunt van de grafiek met de \(x\text{-}\)as.

SnijpuntMetXas
00ju - Lineaire formules - basis - midden

Het snijpunt van de grafiek met de \(x\text{-}\)as volgt uit
\(4x+1=0\)

1p

De balansmethode geeft
\(4x=-1\)
\(x=-\frac{1}{4}\)

1p

Het snijpunt van de grafiek met de \(x\text{-}\)as is \((-\frac{1}{4}, 0)\text{.}\)

1p

opgave 2

Gegeven is de formule \(y=3x+4\text{.}\)

2p

Bereken exact de coördinaat van het snijpunt van de grafiek met de \(y\text{-}\)as.

SnijpuntMetYas
00jv - Lineaire formules - basis - midden

Het snijpunt van de grafiek met de \(y\text{-}\)as volgt uit
\(y=3⋅0+4=4\)

1p

Het snijpunt van de grafiek met de \(y\text{-}\)as is \((0, 4)\text{.}\)

1p

"