Getal & Ruimte (12e editie) - havo wiskunde B
'Logaritmen herleiden'.
| havo wiskunde B | 9.3 Rekenregels voor logaritmen |
opgave 1Herleid tot één logaritme. 1p a \({}^{5}\!\log(2)+{}^{5}\!\log(4a-1)\) Optellen (1) 00ku - Logaritmen herleiden - basis - basis - 1ms - dynamic variables a \({}^{5}\!\log(2)+{}^{5}\!\log(4a-1)\) 1p 1p b \({}^{5}\!\log(2)-{}^{5}\!\log(p-4)\) Aftrekken 00kv - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{5}\!\log(2)-{}^{5}\!\log(p-4)\) 1p 2p c \(5⋅{}^{2}\!\log(4x)\) Vermenigvuldigen 00kw - Logaritmen herleiden - basis - midden - 1ms - dynamic variables c \(5⋅{}^{2}\!\log(4x)\) 1p ○ \(\text{ }={}^{2}\!\log(1\,024x^5)\) 1p 2p d \(5⋅{}^{4}\!\log(a)+{}^{4}\!\log(2a+3)\) OptellenVermenigvuldigen 00kx - Logaritmen herleiden - basis - eind - 1ms - dynamic variables d \(5⋅{}^{4}\!\log(a)+{}^{4}\!\log(2a+3)\) 1p ○ \(\text{ }={}^{4}\!\log(a^5⋅(2a+3))\) 1p opgave 2Herleid tot één logaritme. 2p a \(2+{}^{3}\!\log(x-5)\) Grondtal (1) 00ky - Logaritmen herleiden - basis - midden - 1ms - dynamic variables a \(2+{}^{3}\!\log(x-5)\) 1p ○ \(\text{ }={}^{3}\!\log(9⋅(x-5))\) 1p 3p b \({}^{2}\!\log(32)+{}^{3}\!\log(a-4)\) Grondtal (2) 00kz - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{2}\!\log(32)+{}^{3}\!\log(a-4)\) 1p ○ \(\text{ }={}^{3}\!\log(3^5)+{}^{3}\!\log(a-4)\) 1p ○ \(\text{ }={}^{3}\!\log(243⋅(a-4))\) 1p |