Getal & Ruimte (12e editie) - havo wiskunde B
'Logaritmen herleiden'.
| havo wiskunde B | 9.3 Rekenregels voor logaritmen |
opgave 1Herleid tot één logaritme. 1p a \({}^{3}\!\log(4)+{}^{3}\!\log(5x-1)\) Optellen (1) 00ku - Logaritmen herleiden - basis - basis - 1ms - dynamic variables a \({}^{3}\!\log(4)+{}^{3}\!\log(5x-1)\) 1p 1p b \({}^{3}\!\log(5)-{}^{3}\!\log(4a-1)\) Aftrekken 00kv - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{3}\!\log(5)-{}^{3}\!\log(4a-1)\) 1p 2p c \(3⋅{}^{2}\!\log(5p)\) Vermenigvuldigen 00kw - Logaritmen herleiden - basis - midden - 1ms - dynamic variables c \(3⋅{}^{2}\!\log(5p)\) 1p ○ \(\text{ }={}^{2}\!\log(125p^3)\) 1p 2p d \(2⋅{}^{5}\!\log(x)+{}^{5}\!\log(4x+3)\) OptellenVermenigvuldigen 00kx - Logaritmen herleiden - basis - eind - 1ms - dynamic variables d \(2⋅{}^{5}\!\log(x)+{}^{5}\!\log(4x+3)\) 1p ○ \(\text{ }={}^{5}\!\log(x^2⋅(4x+3))\) 1p opgave 2Herleid tot één logaritme. 2p a \(2+{}^{5}\!\log(3a+4)\) Grondtal (1) 00ky - Logaritmen herleiden - basis - midden - 1ms - dynamic variables a \(2+{}^{5}\!\log(3a+4)\) 1p ○ \(\text{ }={}^{5}\!\log(25⋅(3a+4))\) 1p 3p b \({}^{5}\!\log(625)+{}^{2}\!\log(p-3)\) Grondtal (2) 00kz - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{5}\!\log(625)+{}^{2}\!\log(p-3)\) 1p ○ \(\text{ }={}^{2}\!\log(2^4)+{}^{2}\!\log(p-3)\) 1p ○ \(\text{ }={}^{2}\!\log(16⋅(p-3))\) 1p |