Getal & Ruimte (12e editie) - havo wiskunde B
'Logaritmen herleiden'.
| havo wiskunde B | 9.3 Rekenregels voor logaritmen |
opgave 1Herleid tot één logaritme. 1p a \({}^{5}\!\log(a)+{}^{5}\!\log(3a-2)\) Optellen (1) 00ku - Logaritmen herleiden - basis - basis - 1ms - dynamic variables a \({}^{5}\!\log(a)+{}^{5}\!\log(3a-2)\) 1p 1p b \({}^{5}\!\log(4x)-{}^{5}\!\log(x-3)\) Aftrekken 00kv - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{5}\!\log(4x)-{}^{5}\!\log(x-3)\) 1p 2p c \(4⋅{}^{3}\!\log(2x)\) Vermenigvuldigen 00kw - Logaritmen herleiden - basis - midden - 1ms - dynamic variables c \(4⋅{}^{3}\!\log(2x)\) 1p ○ \(\text{ }={}^{3}\!\log(16x^4)\) 1p 2p d \(5⋅{}^{2}\!\log(a)+{}^{2}\!\log(4a+1)\) OptellenVermenigvuldigen 00kx - Logaritmen herleiden - basis - eind - 1ms - dynamic variables d \(5⋅{}^{2}\!\log(a)+{}^{2}\!\log(4a+1)\) 1p ○ \(\text{ }={}^{2}\!\log(a^5⋅(4a+1))\) 1p opgave 2Herleid tot één logaritme. 2p a \(4+{}^{5}\!\log(p-3)\) Grondtal (1) 00ky - Logaritmen herleiden - basis - midden - 1ms - dynamic variables a \(4+{}^{5}\!\log(p-3)\) 1p ○ \(\text{ }={}^{5}\!\log(625⋅(p-3))\) 1p 3p b \({}^{5}\!\log(625)+{}^{2}\!\log(p-3)\) Grondtal (2) 00kz - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{5}\!\log(625)+{}^{2}\!\log(p-3)\) 1p ○ \(\text{ }={}^{2}\!\log(2^4)+{}^{2}\!\log(p-3)\) 1p ○ \(\text{ }={}^{2}\!\log(16⋅(p-3))\) 1p |