Getal & Ruimte (12e editie) - havo wiskunde B
'Sinus, cosinus en tangens'.
| 3 havo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=52\text{,}\) \(\angle L=52\degree\) en \(\angle M=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis - 0ms a Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle L)={K\kern{-.8pt}M \over L\kern{-.8pt}M}\) ofwel \(\tan(52\degree)={K\kern{-.8pt}M \over 52}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M=52⋅\tan(52\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈66{,}6\text{.}\) 1p 3p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=22\text{,}\) \(\angle P=53\degree\) en \(\angle Q=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis - 0ms b Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\tan(53\degree)={22 \over P\kern{-.8pt}Q}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}Q={22 \over \tan(53\degree)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}Q≈16{,}6\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=57\text{,}\) \(Q\kern{-.8pt}R=33\) en \(\angle Q=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis - 0ms c Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\tan(\angle P)={33 \over 57}\text{.}\) 1p ○ Hieruit volgt \(\angle P=\tan^{-1}({33 \over 57})\text{.}\) 1p ○ Dus \(\angle P≈30{,}1\degree\text{.}\) 1p |
|
| 3 havo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=72\text{,}\) \(\angle P=40\degree\) en \(\angle Q=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis - 0ms a Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}R}\) ofwel \(\sin(40\degree)={Q\kern{-.8pt}R \over 72}\text{.}\) 1p ○ Hieruit volgt \(Q\kern{-.8pt}R=72⋅\sin(40\degree)\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R≈46{,}3\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=47\text{,}\) \(\angle B=41\degree\) en \(\angle C=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis - 0ms b Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle B)={A\kern{-.8pt}C \over A\kern{-.8pt}B}\) ofwel \(\sin(41\degree)={47 \over A\kern{-.8pt}B}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B={47 \over \sin(41\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈71{,}6\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=55\text{,}\) \(P\kern{-.8pt}R=60\) en \(\angle Q=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis - 0ms c Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}R}\) ofwel \(\sin(\angle P)={55 \over 60}\text{.}\) 1p ○ Hieruit volgt \(\angle P=\sin^{-1}({55 \over 60})\text{.}\) 1p ○ Dus \(\angle P≈66{,}4\degree\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=52\text{,}\) \(\angle M=47\degree\) en \(\angle K=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis - 0ms d Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle M)={K\kern{-.8pt}M \over L\kern{-.8pt}M}\) ofwel \(\cos(47\degree)={K\kern{-.8pt}M \over 52}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M=52⋅\cos(47\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈35{,}5\text{.}\) 1p opgave 23p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=35\text{,}\) \(\angle A=37\degree\) en \(\angle B=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis - 0ms a Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle A)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\cos(37\degree)={35 \over A\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}C={35 \over \cos(37\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C≈43{,}8\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=35\text{,}\) \(K\kern{-.8pt}M=52\) en \(\angle L=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis - 0ms b Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle K)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\cos(\angle K)={35 \over 52}\text{.}\) 1p ○ Hieruit volgt \(\angle K=\cos^{-1}({35 \over 52})\text{.}\) 1p ○ Dus \(\angle K≈47{,}7\degree\text{.}\) 1p |