Getal & Ruimte (12e editie) - havo wiskunde B
'Sinus- en cosinusregel'.
| havo wiskunde B | 3.2 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=22\text{,}\) \(\angle M=55\degree\) en \(\angle K=75\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis - 0ms a De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M={K\kern{-.8pt}L⋅\sin(\angle K) \over \sin(\angle M)}={22⋅\sin(75\degree) \over \sin(55\degree)}\text{.}\) 1p ○ \(L\kern{-.8pt}M≈25{,}9\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=10\text{,}\) \(\angle K=35\degree\) en \(\angle L=107\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis - 0ms b De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M={L\kern{-.8pt}M⋅\sin(\angle L) \over \sin(\angle K)}={10⋅\sin(107\degree) \over \sin(35\degree)}\text{.}\) 1p ○ \(K\kern{-.8pt}M≈16{,}7\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=14\text{,}\) \(K\kern{-.8pt}L=28\) en \(\angle L=28\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis - 8ms c De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle M)={K\kern{-.8pt}L⋅\sin(\angle L) \over K\kern{-.8pt}M}={28⋅\sin(28\degree) \over 14}=0{,}938...\text{.}\) 1p ○ Dit geeft \(\angle M≈69{,}9\degree\) of \(\angle M≈110{,}1\degree\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=16\text{,}\) \(K\kern{-.8pt}M=28\) en \(\angle K=29\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis - 0ms d De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle L)={K\kern{-.8pt}M⋅\sin(\angle K) \over L\kern{-.8pt}M}={28⋅\sin(29\degree) \over 16}=0{,}848...\text{.}\) 1p ○ Dit geeft \(\angle L≈58{,}0\degree\) of \(\angle L≈122{,}0\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=10\text{,}\) \(\angle A=64\degree\) en \(\angle C=56\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis - 0ms a Uit \(\angle A+\angle B+\angle C=180\degree\) volgt \(\angle B=180\degree-\angle A-\angle C=180\degree-64\degree-56\degree=60\degree\text{.}\) 1p ○ De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C={A\kern{-.8pt}C⋅\sin(\angle A) \over \sin(\angle B)}={10⋅\sin(64\degree) \over \sin(60\degree)}\text{.}\) 1p ○ \(B\kern{-.8pt}C≈10{,}4\text{.}\) 1p 4p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=22\text{,}\) \(\angle M=37\degree\) en \(\angle L=44\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis - 0ms b Uit \(\angle M+\angle K+\angle L=180\degree\) volgt \(\angle K=180\degree-\angle M-\angle L=180\degree-37\degree-44\degree=99\degree\text{.}\) 1p ○ De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L={L\kern{-.8pt}M⋅\sin(\angle M) \over \sin(\angle K)}={22⋅\sin(37\degree) \over \sin(99\degree)}\text{.}\) 1p ○ \(K\kern{-.8pt}L≈13{,}4\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=22\text{,}\) \(B\kern{-.8pt}C=20\) en \(\angle B=73\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis - 1ms c De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}C^2=A\kern{-.8pt}B^2+B\kern{-.8pt}C^2-2⋅A\kern{-.8pt}B⋅B\kern{-.8pt}C⋅\cos(\angle B)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C^2=22^2+20^2-2⋅22⋅20⋅\cos(73\degree)=626{,}712...\text{.}\) 1p ○ \(A\kern{-.8pt}C=\sqrt{626{,}712...}≈25{,}0\text{.}\) 1p 3p d Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=11\text{,}\) \(B\kern{-.8pt}C=11\) en \(\angle B=99\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis - 0ms d De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}C^2=A\kern{-.8pt}B^2+B\kern{-.8pt}C^2-2⋅A\kern{-.8pt}B⋅B\kern{-.8pt}C⋅\cos(\angle B)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C^2=11^2+11^2-2⋅11⋅11⋅\cos(99\degree)=279{,}857...\text{.}\) 1p ○ \(A\kern{-.8pt}C=\sqrt{279{,}857...}≈16{,}7\text{.}\) 1p opgave 34p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=23\text{,}\) \(A\kern{-.8pt}B=21\) en \(B\kern{-.8pt}C=22\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis - 5ms a De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2=A\kern{-.8pt}C^2+A\kern{-.8pt}B^2-2⋅A\kern{-.8pt}C⋅A\kern{-.8pt}B⋅\cos(\angle A)\text{.}\) 1p ○ Invullen geeft \(22^2=23^2+21^2-2⋅23⋅21⋅\cos(\angle A)\) 1p ○ Balansmethode geeft \(\cos(\angle A)={484-970 \over -966}=0{,}503...\) 1p ○ Hieruit volgt \(\angle A=\cos^{-1}(0{,}503...)≈59{,}8\degree\text{.}\) 1p 4p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=21\text{,}\) \(K\kern{-.8pt}M=25\) en \(K\kern{-.8pt}L=39\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis - 0ms b De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}L^2=L\kern{-.8pt}M^2+K\kern{-.8pt}M^2-2⋅L\kern{-.8pt}M⋅K\kern{-.8pt}M⋅\cos(\angle M)\text{.}\) 1p ○ Invullen geeft \(39^2=21^2+25^2-2⋅21⋅25⋅\cos(\angle M)\) 1p ○ Balansmethode geeft \(\cos(\angle M)={1\,521-1\,066 \over -1\,050}=-0{,}433...\) 1p ○ Hieruit volgt \(\angle M=\cos^{-1}(-0{,}433...)≈115{,}7\degree\text{.}\) 1p |