Getal & Ruimte (12e editie) - havo wiskunde B
'Sinus- en cosinusregel'.
| havo wiskunde B | 3.2 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=29\text{,}\) \(\angle P=61\degree\) en \(\angle Q=59\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis - 0ms a De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R={Q\kern{-.8pt}R⋅\sin(\angle Q) \over \sin(\angle P)}={29⋅\sin(59\degree) \over \sin(61\degree)}\text{.}\) 1p ○ \(P\kern{-.8pt}R≈28{,}4\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=18\text{,}\) \(\angle A=44\degree\) en \(\angle B=106\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis - 0ms b De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C={B\kern{-.8pt}C⋅\sin(\angle B) \over \sin(\angle A)}={18⋅\sin(106\degree) \over \sin(44\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}C≈24{,}9\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=18\text{,}\) \(L\kern{-.8pt}M=26\) en \(\angle M=25\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis - 5ms c De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle K)={L\kern{-.8pt}M⋅\sin(\angle M) \over K\kern{-.8pt}L}={26⋅\sin(25\degree) \over 18}=0{,}610...\text{.}\) 1p ○ Dit geeft \(\angle K≈37{,}6\degree\) of \(\angle K≈142{,}4\degree\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=15\text{,}\) \(K\kern{-.8pt}L=25\) en \(\angle L=30\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis - 0ms d De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle M)={K\kern{-.8pt}L⋅\sin(\angle L) \over K\kern{-.8pt}M}={25⋅\sin(30\degree) \over 15}=0{,}833...\text{.}\) 1p ○ Dit geeft \(\angle M≈56{,}4\degree\) of \(\angle M≈123{,}6\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=36\text{,}\) \(\angle C=33\degree\) en \(\angle B=59\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis - 0ms a Uit \(\angle C+\angle A+\angle B=180\degree\) volgt \(\angle A=180\degree-\angle C-\angle B=180\degree-33\degree-59\degree=88\degree\text{.}\) 1p ○ De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B={B\kern{-.8pt}C⋅\sin(\angle C) \over \sin(\angle A)}={36⋅\sin(33\degree) \over \sin(88\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}B≈19{,}6\text{.}\) 1p 4p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=25\text{,}\) \(\angle P=27\degree\) en \(\angle R=48\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis - 0ms b Uit \(\angle P+\angle Q+\angle R=180\degree\) volgt \(\angle Q=180\degree-\angle P-\angle R=180\degree-27\degree-48\degree=105\degree\text{.}\) 1p ○ De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R={P\kern{-.8pt}R⋅\sin(\angle P) \over \sin(\angle Q)}={25⋅\sin(27\degree) \over \sin(105\degree)}\text{.}\) 1p ○ \(Q\kern{-.8pt}R≈11{,}8\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=17\text{,}\) \(K\kern{-.8pt}M=14\) en \(\angle M=82\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis - 0ms c De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}L^2=L\kern{-.8pt}M^2+K\kern{-.8pt}M^2-2⋅L\kern{-.8pt}M⋅K\kern{-.8pt}M⋅\cos(\angle M)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L^2=17^2+14^2-2⋅17⋅14⋅\cos(82\degree)=418{,}753...\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{418{,}753...}≈20{,}5\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=16\text{,}\) \(K\kern{-.8pt}L=14\) en \(\angle K=98\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis - 0ms d De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2=K\kern{-.8pt}M^2+K\kern{-.8pt}L^2-2⋅K\kern{-.8pt}M⋅K\kern{-.8pt}L⋅\cos(\angle K)\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M^2=16^2+14^2-2⋅16⋅14⋅\cos(98\degree)=514{,}349...\text{.}\) 1p ○ \(L\kern{-.8pt}M=\sqrt{514{,}349...}≈22{,}7\text{.}\) 1p opgave 34p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=31\text{,}\) \(Q\kern{-.8pt}R=29\) en \(P\kern{-.8pt}R=34\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis - 5ms a De cosinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}R^2=P\kern{-.8pt}Q^2+Q\kern{-.8pt}R^2-2⋅P\kern{-.8pt}Q⋅Q\kern{-.8pt}R⋅\cos(\angle Q)\text{.}\) 1p ○ Invullen geeft \(34^2=31^2+29^2-2⋅31⋅29⋅\cos(\angle Q)\) 1p ○ Balansmethode geeft \(\cos(\angle Q)={1\,156-1\,802 \over -1\,798}=0{,}359...\) 1p ○ Hieruit volgt \(\angle Q=\cos^{-1}(0{,}359...)≈68{,}9\degree\text{.}\) 1p 4p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=21\text{,}\) \(P\kern{-.8pt}R=30\) en \(P\kern{-.8pt}Q=41\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis - 0ms b De cosinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}Q^2=Q\kern{-.8pt}R^2+P\kern{-.8pt}R^2-2⋅Q\kern{-.8pt}R⋅P\kern{-.8pt}R⋅\cos(\angle R)\text{.}\) 1p ○ Invullen geeft \(41^2=21^2+30^2-2⋅21⋅30⋅\cos(\angle R)\) 1p ○ Balansmethode geeft \(\cos(\angle R)={1\,681-1\,341 \over -1\,260}=-0{,}269...\) 1p ○ Hieruit volgt \(\angle R=\cos^{-1}(-0{,}269...)≈105{,}7\degree\text{.}\) 1p |