Getal & Ruimte (12e editie) - havo wiskunde B
'Stelling van Pythagoras'.
| 2 havo/vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=56\text{,}\) \(K\kern{-.8pt}M=29\) en \(\angle \text{M}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(K\kern{-.8pt}L\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis ○ Pythagoras in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2+K\kern{-.8pt}M^2=K\kern{-.8pt}L^2\text{.}\) 1p ○ \(K\kern{-.8pt}L^2=56^2+29^2=3\,977\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{3\,977}≈63{,}1\text{.}\) 1p |
|
| 2 havo/vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=26\text{,}\) \(A\kern{-.8pt}B=41\) en \(\angle \text{C}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(A\kern{-.8pt}C\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis ○ Pythagoras in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2+A\kern{-.8pt}C^2=A\kern{-.8pt}B^2\) ofwel \(26^2+A\kern{-.8pt}C^2=41^2\text{.}\) 1p ○ \(A\kern{-.8pt}C^2=41^2-26^2=1\,005\text{.}\) 1p ○ \(A\kern{-.8pt}C=\sqrt{1\,005}≈31{,}7\text{.}\) 1p |