Getal & Ruimte (12e editie) - havo wiskunde B
'Stelling van Pythagoras'.
| 2 havo/vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=11\text{,}\) \(K\kern{-.8pt}M=59\) en \(\angle \text{M}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(K\kern{-.8pt}L\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis - 1ms ○ Pythagoras in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2+K\kern{-.8pt}M^2=K\kern{-.8pt}L^2\text{.}\) 1p ○ \(K\kern{-.8pt}L^2=11^2+59^2=3\,602\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{3\,602}≈60{,}0\text{.}\) 1p |
|
| 2 havo/vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=14\text{,}\) \(P\kern{-.8pt}R=54\) en \(\angle \text{Q}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(Q\kern{-.8pt}R\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis - 0ms ○ Pythagoras in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}Q^2+Q\kern{-.8pt}R^2=P\kern{-.8pt}R^2\) ofwel \(14^2+Q\kern{-.8pt}R^2=54^2\text{.}\) 1p ○ \(Q\kern{-.8pt}R^2=54^2-14^2=2\,720\text{.}\) 1p ○ \(Q\kern{-.8pt}R=\sqrt{2\,720}≈52{,}2\text{.}\) 1p |