Getal & Ruimte (12e editie) - havo wiskunde B
'Stelling van Pythagoras'.
| 2 havo/vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=18\text{,}\) \(B\kern{-.8pt}C=59\) en \(\angle \text{B}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(A\kern{-.8pt}C\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis - 1ms ○ Pythagoras in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}B^2+B\kern{-.8pt}C^2=A\kern{-.8pt}C^2\text{.}\) 1p ○ \(A\kern{-.8pt}C^2=18^2+59^2=3\,805\text{.}\) 1p ○ \(A\kern{-.8pt}C=\sqrt{3\,805}≈61{,}7\text{.}\) 1p |
|
| 2 havo/vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=22\text{,}\) \(Q\kern{-.8pt}R=37\) en \(\angle \text{P}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(P\kern{-.8pt}Q\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis - 0ms ○ Pythagoras in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}R^2+P\kern{-.8pt}Q^2=Q\kern{-.8pt}R^2\) ofwel \(22^2+P\kern{-.8pt}Q^2=37^2\text{.}\) 1p ○ \(P\kern{-.8pt}Q^2=37^2-22^2=885\text{.}\) 1p ○ \(P\kern{-.8pt}Q=\sqrt{885}≈29{,}7\text{.}\) 1p |