Getal & Ruimte (12e editie) - havo wiskunde B
'Stelsels oplossen'.
| havo wiskunde B | 1.3 Stelsels vergelijkingen |
opgave 1Los exact op. 3p a \(\begin{cases}4a-3b=-1 \\ 3a-3b=3\end{cases}\) Eliminatie (1) 003f - Stelsels oplossen - basis - dynamic variables a Aftrekken geeft \(a=-4\text{.}\) 1p ○ \(\begin{rcases}4a-3b=-1 \\ a=-4\end{rcases}\begin{matrix}4⋅-4-3b=-1 \\ -3b=15 \\ b=-5\end{matrix}\) 1p ○ De oplossing is \((a, b)=(-4, -5)\text{.}\) 1p 4p b \(\begin{cases}2x+2y=-4 \\ 4x+5y=-1\end{cases}\) Eliminatie (2) 003g - Stelsels oplossen - basis - dynamic variables b \(\begin{cases}2x+2y=-4 \\ 4x+5y=-1\end{cases}\) \(\begin{vmatrix}2 \\ 1\end{vmatrix}\) geeft \(\begin{cases}4x+4y=-8 \\ 4x+5y=-1\end{cases}\) 1p ○ Aftrekken geeft \(-y=-7\text{,}\) dus \(y=7\text{.}\) 1p ○ \(\begin{rcases}2x+2y=-4 \\ y=7\end{rcases}\begin{matrix}2x+2⋅7=-4 \\ 2x=-18 \\ x=-9\end{matrix}\) 1p ○ De oplossing is \((x, y)=(-9, 7)\text{.}\) 1p 4p c \(\begin{cases}5p+3q=-3 \\ 2p-2q=-6\end{cases}\) Eliminatie (3) 003h - Stelsels oplossen - basis - dynamic variables c \(\begin{cases}5p+3q=-3 \\ 2p-2q=-6\end{cases}\) \(\begin{vmatrix}2 \\ 3\end{vmatrix}\) geeft \(\begin{cases}10p+6q=-6 \\ 6p-6q=-18\end{cases}\) 1p ○ Optellen geeft \(16p=-24\text{,}\) dus \(p=-1\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}5p+3q=-3 \\ p=-1\frac{1}{2}\end{rcases}\begin{matrix}5⋅-1\frac{1}{2}+3q=-3 \\ 3q=4\frac{1}{2} \\ q=1\frac{1}{2}\end{matrix}\) 1p ○ De oplossing is \((p, q)=(-1\frac{1}{2}, 1\frac{1}{2})\text{.}\) 1p 4p d \(\begin{cases}y=6x+33 \\ y=8x+43\end{cases}\) GelijkStellen 003i - Stelsels oplossen - basis d Gelijk stellen geeft \(6x+33=8x+43\) 1p ○ \(-2x=10\) dus \(x=-5\) 1p ○ \(\begin{rcases}y=6x+33 \\ x=-5\end{rcases}\begin{matrix}y=6⋅-5+33 \\ y=3\end{matrix}\) 1p ○ De oplossing is \((x, y)=(-5, 3)\text{.}\) 1p opgave 2Los exact op. 4p a \(\begin{cases}7x+3y=20 \\ x=6y+35\end{cases}\) Substitutie (1) 003j - Stelsels oplossen - basis - dynamic variables a Substitutie geeft \(7(6y+35)+3y=20\) 1p ○ Haakjes wegwerken geeft 1p ○ \(\begin{rcases}x=6y+35 \\ y=-5\end{rcases}\begin{matrix}x=6⋅-5+35 \\ x=5\end{matrix}\) 1p ○ De oplossing is \((x, y)=(5, -5)\text{.}\) 1p 4p b \(\begin{cases}a=9b+3 \\ b=7a+41\end{cases}\) Substitutie (2) 003k - Stelsels oplossen - basis - dynamic variables b Substitutie geeft \(a=9(7a+41)+3\) 1p ○ Haakjes wegwerken geeft 1p ○ \(\begin{rcases}b=7a+41 \\ a=-6\end{rcases}\begin{matrix}b=7⋅-6+41 \\ b=-1\end{matrix}\) 1p ○ De oplossing is \((a, b)=(-6, -1)\text{.}\) 1p |