Getal & Ruimte (12e editie) - vwo wiskunde A
'Stelsels oplossen'.
| vwo wiskunde A | k.1 Stelsels van lineaire vergelijkingen |
opgave 1Los exact op. 3p a \(\begin{cases}5x+y=-1 \\ x-y=4\end{cases}\) Eliminatie (1) 003f - Stelsels oplossen - basis - 304ms - dynamic variables a Optellen geeft \(6x=3\text{,}\) dus \(x=\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}5x+y=-1 \\ x=\frac{1}{2}\end{rcases}\begin{matrix}5⋅\frac{1}{2}+y=-1 \\ y=-3\frac{1}{2}\end{matrix}\) 1p ○ De oplossing is \((x, y)=(\frac{1}{2}, -3\frac{1}{2})\text{.}\) 1p 4p b \(\begin{cases}4p-4q=4 \\ p-2q=4\end{cases}\) Eliminatie (2) 003g - Stelsels oplossen - basis - 8ms - dynamic variables b \(\begin{cases}4p-4q=4 \\ p-2q=4\end{cases}\) \(\begin{vmatrix}1 \\ 2\end{vmatrix}\) geeft \(\begin{cases}4p-4q=4 \\ 2p-4q=8\end{cases}\) 1p ○ Aftrekken geeft \(2p=-4\text{,}\) dus \(p=-2\text{.}\) 1p ○ \(\begin{rcases}4p-4q=4 \\ p=-2\end{rcases}\begin{matrix}4⋅-2-4q=4 \\ -4q=12 \\ q=-3\end{matrix}\) 1p ○ De oplossing is \((p, q)=(-2, -3)\text{.}\) 1p 4p c \(\begin{cases}3a+5b=3 \\ 2a+2b=4\end{cases}\) Eliminatie (3) 003h - Stelsels oplossen - basis - 8ms - dynamic variables c \(\begin{cases}3a+5b=3 \\ 2a+2b=4\end{cases}\) \(\begin{vmatrix}2 \\ 5\end{vmatrix}\) geeft \(\begin{cases}6a+10b=6 \\ 10a+10b=20\end{cases}\) 1p ○ Aftrekken geeft \(-4a=-14\text{,}\) dus \(a=3\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}3a+5b=3 \\ a=3\frac{1}{2}\end{rcases}\begin{matrix}3⋅3\frac{1}{2}+5b=3 \\ 5b=-7\frac{1}{2} \\ b=-1\frac{1}{2}\end{matrix}\) 1p ○ De oplossing is \((a, b)=(3\frac{1}{2}, -1\frac{1}{2})\text{.}\) 1p opgave 2De lijnen \(k{:}\,4x+3y=3\) en \(l{:}\,2x-y=4\) snijden elkaar in het punt \(S\text{.}\) 4p Bereken de coördinaten van \(S\text{.}\) SnijpuntVanTweeLijnen (1) 00bs - Stelsels oplossen - basis - 218ms - data pool: #928 (218ms) ○ \(\begin{cases}4x+3y=3 \\ 2x-y=4\end{cases}\) \(\begin{vmatrix}1 \\ 3\end{vmatrix}\) geeft \(\begin{cases}4x+3y=3 \\ 6x-3y=12\end{cases}\) 1p ○ Optellen geeft \(10x=15\) dus \(x=1\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}4x+3y=3 \\ x=1\frac{1}{2}\end{rcases}\begin{matrix}4⋅1\frac{1}{2}+3y=3 \\ 3y=-3 \\ y=-1\end{matrix}\) 1p ○ Dus \(S(1\frac{1}{2}, -1)\text{.}\) 1p |