Getal & Ruimte (12e editie) - vwo wiskunde B
'Logaritmen herleiden'.
| vwo wiskunde B | 9.1 Rekenregels voor logaritmen |
opgave 1Herleid tot één logaritme. 1p a \({}^{4}\!\log(3x)+{}^{4}\!\log(5x+1)\) Optellen (1) 00ku - Logaritmen herleiden - basis - basis - 1ms - dynamic variables a \({}^{4}\!\log(3x)+{}^{4}\!\log(5x+1)\) 1p 1p b \({}^{2}\!\log(a)-{}^{2}\!\log(4a-3)\) Aftrekken 00kv - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{2}\!\log(a)-{}^{2}\!\log(4a-3)\) 1p 2p c \(5⋅{}^{2}\!\log(4a)\) Vermenigvuldigen 00kw - Logaritmen herleiden - basis - midden - 1ms - dynamic variables c \(5⋅{}^{2}\!\log(4a)\) 1p ○ \(\text{ }={}^{2}\!\log(1\,024a^5)\) 1p 2p d \(3⋅{}^{2}\!\log(x)+{}^{2}\!\log(4x-5)\) OptellenVermenigvuldigen 00kx - Logaritmen herleiden - basis - eind - 1ms - dynamic variables d \(3⋅{}^{2}\!\log(x)+{}^{2}\!\log(4x-5)\) 1p ○ \(\text{ }={}^{2}\!\log(x^3⋅(4x-5))\) 1p opgave 2Herleid tot één logaritme. 2p a \(3+{}^{2}\!\log(4p-5)\) Grondtal (1) 00ky - Logaritmen herleiden - basis - midden - 1ms - dynamic variables a \(3+{}^{2}\!\log(4p-5)\) 1p ○ \(\text{ }={}^{2}\!\log(8⋅(4p-5))\) 1p 3p b \({}^{5}\!\log(625)+{}^{2}\!\log(3x+1)\) Grondtal (2) 00kz - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{5}\!\log(625)+{}^{2}\!\log(3x+1)\) 1p ○ \(\text{ }={}^{2}\!\log(2^4)+{}^{2}\!\log(3x+1)\) 1p ○ \(\text{ }={}^{2}\!\log(16⋅(3x+1))\) 1p |