Getal & Ruimte (12e editie) - vwo wiskunde B
'Logaritmen herleiden'.
| vwo wiskunde B | 9.1 Rekenregels voor logaritmen |
opgave 1Herleid tot één logaritme. 1p a \({}^{2}\!\log(3)+{}^{2}\!\log(a-5)\) Optellen (1) 00ku - Logaritmen herleiden - basis - basis - dynamic variables a \({}^{2}\!\log(3)+{}^{2}\!\log(a-5)\) 1p 1p b \({}^{4}\!\log(3p)-{}^{4}\!\log(p+5)\) Aftrekken 00kv - Logaritmen herleiden - basis - eind - dynamic variables b \({}^{4}\!\log(3p)-{}^{4}\!\log(p+5)\) 1p 2p c \(2⋅{}^{5}\!\log(x+1)\) Vermenigvuldigen 00kw - Logaritmen herleiden - basis - midden - dynamic variables c \(2⋅{}^{5}\!\log(x+1)\) 1p ○ \(\text{ }={}^{5}\!\log(x^2+2x+1)\) 1p 2p d \(2⋅{}^{5}\!\log(a)+{}^{5}\!\log(4a-1)\) OptellenVermenigvuldigen 00kx - Logaritmen herleiden - basis - eind - dynamic variables d \(2⋅{}^{5}\!\log(a)+{}^{5}\!\log(4a-1)\) 1p ○ \(\text{ }={}^{5}\!\log(a^2⋅(4a-1))\) 1p opgave 2Herleid tot één logaritme. 2p a \(4+{}^{5}\!\log(x-2)\) Grondtal (1) 00ky - Logaritmen herleiden - basis - midden - dynamic variables a \(4+{}^{5}\!\log(x-2)\) 1p ○ \(\text{ }={}^{5}\!\log(625⋅(x-2))\) 1p 3p b \({}^{2}\!\log(32)+{}^{4}\!\log(3p+1)\) Grondtal (2) 00kz - Logaritmen herleiden - basis - eind - dynamic variables b \({}^{2}\!\log(32)+{}^{4}\!\log(3p+1)\) 1p ○ \(\text{ }={}^{4}\!\log(4^5)+{}^{4}\!\log(3p+1)\) 1p ○ \(\text{ }={}^{4}\!\log(1\,024⋅(3p+1))\) 1p |