Getal & Ruimte (12e editie) - vwo wiskunde B
'Logaritmen herleiden'.
| vwo wiskunde B | 9.1 Rekenregels voor logaritmen |
opgave 1Herleid tot één logaritme. 1p a \({}^{5}\!\log(2)+{}^{5}\!\log(4a+3)\) Optellen (1) 00ku - Logaritmen herleiden - basis - basis - 1ms - dynamic variables a \({}^{5}\!\log(2)+{}^{5}\!\log(4a+3)\) 1p 1p b \({}^{2}\!\log(4x)-{}^{2}\!\log(5x+3)\) Aftrekken 00kv - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{2}\!\log(4x)-{}^{2}\!\log(5x+3)\) 1p 2p c \(3⋅{}^{5}\!\log(2p)\) Vermenigvuldigen 00kw - Logaritmen herleiden - basis - midden - 1ms - dynamic variables c \(3⋅{}^{5}\!\log(2p)\) 1p ○ \(\text{ }={}^{5}\!\log(8p^3)\) 1p 2p d \(4⋅{}^{2}\!\log(x)+{}^{2}\!\log(5x+3)\) OptellenVermenigvuldigen 00kx - Logaritmen herleiden - basis - eind - 1ms - dynamic variables d \(4⋅{}^{2}\!\log(x)+{}^{2}\!\log(5x+3)\) 1p ○ \(\text{ }={}^{2}\!\log(x^4⋅(5x+3))\) 1p opgave 2Herleid tot één logaritme. 2p a \(4+{}^{5}\!\log(2a+1)\) Grondtal (1) 00ky - Logaritmen herleiden - basis - midden - 1ms - dynamic variables a \(4+{}^{5}\!\log(2a+1)\) 1p ○ \(\text{ }={}^{5}\!\log(625⋅(2a+1))\) 1p 3p b \({}^{4}\!\log(64)+{}^{2}\!\log(5x+1)\) Grondtal (2) 00kz - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{4}\!\log(64)+{}^{2}\!\log(5x+1)\) 1p ○ \(\text{ }={}^{2}\!\log(2^3)+{}^{2}\!\log(5x+1)\) 1p ○ \(\text{ }={}^{2}\!\log(8⋅(5x+1))\) 1p |