Getal & Ruimte (12e editie) - vwo wiskunde B

'Raaklijnen aan cirkels'.

vwo wiskunde B 7.4 Afstanden en raaklijnen bij cirkels

Raaklijnen aan cirkels (1)

opgave 1

Gegeven is de cirkel \(c{:}\,x^2+y^2+6x-11=0\text{.}\)
De lijn \(l\) raakt de cirkel in het punt \(A(1, 2)\text{.}\)

4p

Stel de vergelijking van \(l\) op.

GegevenRaakpunt
00bp - Raaklijnen aan cirkels - basis - 0ms

Kwadraatafsplitsen geeft \((x+3)^2+y^2=20\)
Dus \(M(-3, 0)\) en \(r=\sqrt{20}\text{.}\)

1p

De lijn \(m\) door \(M\) en \(A\) heeft \(\text{rc}_m={\Delta y \over \Delta x}={0-2 \over -3-1}=\frac{1}{2}\text{.}\)

1p

\(\begin{rcases}l\perp m\text{, dus }\text{rc}_l⋅\text{rc}_m=-1 \\ \text{rc}_m=\frac{1}{2}\end{rcases}\text{rc}_l=-2\)

1p

\(\begin{rcases}y=-2x+b \\ \text{door }A(1, 2)\end{rcases}\begin{matrix}2=-2⋅1+b \\ 2=-2+b \\ b=4\end{matrix}\)
Dus \(l{:}\,y=-2x+4\text{.}\)

1p

"