Getal & Ruimte (12e editie) - vwo wiskunde B
'Sinus- en cosinusregel'.
| vwo wiskunde B | 3.5 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=26\text{,}\) \(\angle K=58\degree\) en \(\angle L=63\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis - 0ms a De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M={L\kern{-.8pt}M⋅\sin(\angle L) \over \sin(\angle K)}={26⋅\sin(63\degree) \over \sin(58\degree)}\text{.}\) 1p ○ \(K\kern{-.8pt}M≈27{,}3\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=13\text{,}\) \(\angle C=32\degree\) en \(\angle A=123\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis - 0ms b De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C={A\kern{-.8pt}B⋅\sin(\angle A) \over \sin(\angle C)}={13⋅\sin(123\degree) \over \sin(32\degree)}\text{.}\) 1p ○ \(B\kern{-.8pt}C≈20{,}6\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=13\text{,}\) \(B\kern{-.8pt}C=26\) en \(\angle C=27\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis - 5ms c De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle A)={B\kern{-.8pt}C⋅\sin(\angle C) \over A\kern{-.8pt}B}={26⋅\sin(27\degree) \over 13}=0{,}907...\text{.}\) 1p ○ Dit geeft \(\angle A≈65{,}2\degree\) of \(\angle A≈114{,}8\degree\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=11\text{,}\) \(Q\kern{-.8pt}R=16\) en \(\angle R=26\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis - 0ms d De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle P)={Q\kern{-.8pt}R⋅\sin(\angle R) \over P\kern{-.8pt}Q}={16⋅\sin(26\degree) \over 11}=0{,}637...\text{.}\) 1p ○ Dit geeft \(\angle P≈39{,}6\degree\) of \(\angle P≈140{,}4\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=39\text{,}\) \(\angle K=42\degree\) en \(\angle M=59\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis - 0ms a Uit \(\angle K+\angle L+\angle M=180\degree\) volgt \(\angle L=180\degree-\angle K-\angle M=180\degree-42\degree-59\degree=79\degree\text{.}\) 1p ○ De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M={K\kern{-.8pt}M⋅\sin(\angle K) \over \sin(\angle L)}={39⋅\sin(42\degree) \over \sin(79\degree)}\text{.}\) 1p ○ \(L\kern{-.8pt}M≈26{,}6\text{.}\) 1p 4p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=14\text{,}\) \(\angle B=47\degree\) en \(\angle A=42\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis - 0ms b Uit \(\angle B+\angle C+\angle A=180\degree\) volgt \(\angle C=180\degree-\angle B-\angle A=180\degree-47\degree-42\degree=91\degree\text{.}\) 1p ○ De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C={A\kern{-.8pt}B⋅\sin(\angle B) \over \sin(\angle C)}={14⋅\sin(47\degree) \over \sin(91\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}C≈10{,}2\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=15\text{,}\) \(A\kern{-.8pt}C=12\) en \(\angle C=89\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis - 0ms c De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}B^2=B\kern{-.8pt}C^2+A\kern{-.8pt}C^2-2⋅B\kern{-.8pt}C⋅A\kern{-.8pt}C⋅\cos(\angle C)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B^2=15^2+12^2-2⋅15⋅12⋅\cos(89\degree)=362{,}717...\text{.}\) 1p ○ \(A\kern{-.8pt}B=\sqrt{362{,}717...}≈19{,}0\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=25\text{,}\) \(L\kern{-.8pt}M=24\) en \(\angle L=93\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis - 0ms d De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}M^2=K\kern{-.8pt}L^2+L\kern{-.8pt}M^2-2⋅K\kern{-.8pt}L⋅L\kern{-.8pt}M⋅\cos(\angle L)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M^2=25^2+24^2-2⋅25⋅24⋅\cos(93\degree)=1263{,}803...\text{.}\) 1p ○ \(K\kern{-.8pt}M=\sqrt{1263{,}803...}≈35{,}6\text{.}\) 1p opgave 34p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=13\text{,}\) \(L\kern{-.8pt}M=24\) en \(K\kern{-.8pt}M=27\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis - 5ms a De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}M^2=K\kern{-.8pt}L^2+L\kern{-.8pt}M^2-2⋅K\kern{-.8pt}L⋅L\kern{-.8pt}M⋅\cos(\angle L)\text{.}\) 1p ○ Invullen geeft \(27^2=13^2+24^2-2⋅13⋅24⋅\cos(\angle L)\) 1p ○ Balansmethode geeft \(\cos(\angle L)={729-745 \over -624}=0{,}025...\) 1p ○ Hieruit volgt \(\angle L=\cos^{-1}(0{,}025...)≈88{,}5\degree\text{.}\) 1p 4p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=23\text{,}\) \(K\kern{-.8pt}L=34\) en \(L\kern{-.8pt}M=45\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis - 0ms b De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2=K\kern{-.8pt}M^2+K\kern{-.8pt}L^2-2⋅K\kern{-.8pt}M⋅K\kern{-.8pt}L⋅\cos(\angle K)\text{.}\) 1p ○ Invullen geeft \(45^2=23^2+34^2-2⋅23⋅34⋅\cos(\angle K)\) 1p ○ Balansmethode geeft \(\cos(\angle K)={2\,025-1\,685 \over -1\,564}=-0{,}217...\) 1p ○ Hieruit volgt \(\angle K=\cos^{-1}(-0{,}217...)≈102{,}6\degree\text{.}\) 1p |