Getal & Ruimte (12e editie) - vwo wiskunde B

'Stelling van Pythagoras'.

2 vwo 6.2 Schuine zijden berekenen

Stelling van Pythagoras (1)

opgave 1

Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=23\text{,}\) \(A\kern{-.8pt}B=34\) en \(\angle \text{A}=90\degree\text{.}\)

CAB23?34

3p

Bereken de lengte van zijde \(B\kern{-.8pt}C\text{.}\)
Rond indien nodig af op één decimaal.

Pythagoras (1)
007c - Stelling van Pythagoras - basis - 1ms

Pythagoras in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}C^2+A\kern{-.8pt}B^2=B\kern{-.8pt}C^2\text{.}\)

1p

\(B\kern{-.8pt}C^2=23^2+34^2=1\,685\text{.}\)

1p

\(B\kern{-.8pt}C=\sqrt{1\,685}≈41{,}0\text{.}\)

1p

2 vwo 6.3 Rechthoekszijden berekenen

Stelling van Pythagoras (1)

opgave 1

Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=28\text{,}\) \(Q\kern{-.8pt}R=40\) en \(\angle \text{P}=90\degree\text{.}\)

RPQ2840?

3p

Bereken de lengte van zijde \(P\kern{-.8pt}Q\text{.}\)
Rond indien nodig af op één decimaal.

Pythagoras (2)
007d - Stelling van Pythagoras - basis - 0ms

Pythagoras in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}R^2+P\kern{-.8pt}Q^2=Q\kern{-.8pt}R^2\) ofwel \(28^2+P\kern{-.8pt}Q^2=40^2\text{.}\)

1p

\(P\kern{-.8pt}Q^2=40^2-28^2=816\text{.}\)

1p

\(P\kern{-.8pt}Q=\sqrt{816}≈28{,}6\text{.}\)

1p

"