Getal & Ruimte (13e editie) - 2 havo/vwo

'Breuken herleiden'.

2 havo/vwo 1.2 Breuken optellen

Breuken herleiden (15)

opgave 1

Herleid tot één breuk.

1p

a

\({5 \over 2a}-{3 \over 2a}\)

Optellen (1)
008u - Breuken herleiden - basis - dynamic variables

a

\({5 \over 2a}-{3 \over 2a}={2 \over 2a}={1 \over a}\)

1p

1p

b

\({2 \over x}+{5 \over 6x}\)

Optellen (2)
008v - Breuken herleiden - basis - dynamic variables

b

\({2 \over x}+{5 \over 6x}={12 \over 6x}+{5 \over 6x}={17 \over 6x}\)

1p

1p

c

\({9 \over 7x}+{3 \over 4y}\)

Optellen (3)
008w - Breuken herleiden - basis - dynamic variables

c

\({9 \over 7x}+{3 \over 4y}={36y \over 28xy}+{21x \over 28xy}={36y+21x \over 28xy}\)

1p

1p

d

\(6-{4 \over 5p}\)

Optellen (4)
008x - Breuken herleiden - basis - dynamic variables

d

\(6-{4 \over 5p}={6 \over 1}-{4 \over 5p}={30p \over 5p}-{4 \over 5p}={30p-4 \over 5p}\)

1p

opgave 2

Herleid tot één breuk.

1p

a

\(9a+{4 \over 3a}\)

Optellen (5)
008y - Breuken herleiden - basis - dynamic variables

a

\(9a+{4 \over 3a}={9a \over 1}⋅{3a \over 3a}+{4 \over 3a}={27a^2 \over 3a}+{4 \over 3a}={27a^2+4 \over 3a}\)

1p

1p

b

\({9a \over b}+{7 \over 6b}\)

Optellen (6)
008z - Breuken herleiden - basis - dynamic variables

b

\({9a \over b}+{7 \over 6b}={54a \over 6b}+{7 \over 6b}={54a+7 \over 6b}\)

1p

1p

c

\({9q \over 4p}-{7p \over 8q}\)

Optellen (7)
0090 - Breuken herleiden - basis - dynamic variables

c

\({9q \over 4p}-{7p \over 8q}={18q^2 \over 8pq}-{7p^2 \over 8pq}={-7p^2+18q^2 \over 8pq}\)

1p

opgave 3

Herleid.

1p

a

\({9x \over x}\)

Vereenvoudigen (1)
00h5 - Breuken herleiden - basis - dynamic variables

a

\({9x \over x}={9 \over 1}=9\)

1p

1p

b

\({a \over 9a}\)

Vereenvoudigen (2)
00h6 - Breuken herleiden - basis - dynamic variables

b

\({a \over 9a}={1 \over 9}\)

1p

1p

c

\({8x \over 10x}\)

Vereenvoudigen (3)
00h7 - Breuken herleiden - basis - dynamic variables

c

\({8x \over 10x}=\frac{4}{5}\)

1p

1p

d

\({8x \over 2x}\)

Vereenvoudigen (4)
00h8 - Breuken herleiden - basis - dynamic variables

d

\({8x \over 2x}=4\)

1p

opgave 4

Herleid.

1p

a

\({-12ab \over 16ac}\)

Vereenvoudigen (5)
00h9 - Breuken herleiden - basis - dynamic variables

a

\({-12ab \over 16ac}=-{3b \over 4c}\)

1p

1p

b

\({-10y \over 14xy}\)

Vereenvoudigen (6)
00ha - Breuken herleiden - basis - dynamic variables

b

\({-10y \over 14xy}=-{5 \over 7x}\)

1p

1p

c

\({32pqr \over -4qr}\)

Vereenvoudigen (7)
00hb - Breuken herleiden - basis - dynamic variables

c

\({32pqr \over -4qr}=-8p\)

1p

1p

d

\({6ab \over b}+{4ac \over c}\)

Vereenvoudigen (8)
00hc - Breuken herleiden - basis - dynamic variables

d

\({6ab \over b}+{4ac \over c}=6a+4a=10a\)

1p

2 havo/vwo 1.3 Breuken vermenigvuldigen en delen

Breuken herleiden (5)

opgave 1

Herleid tot één breuk.

1p

a

\({4 \over a}⋅-{2 \over b}\)

Vermenigvuldiging (1)
0091 - Breuken herleiden - basis - dynamic variables

a

\({4 \over a}⋅-{2 \over b}=-{8 \over ab}\)

1p

1p

b

\({x \over 8}⋅{7 \over y}\)

Vermenigvuldiging (2)
0092 - Breuken herleiden - basis - dynamic variables

b

\({x \over 8}⋅{7 \over y}={7x \over 8y}\)

1p

1p

c

\(-{9 \over 2}⋅p\)

Vermenigvuldiging (3)
0093 - Breuken herleiden - basis - dynamic variables

c

\(-{9 \over 2}⋅p=-{9p \over 2}\)

1p

1p

d

\({3 \over a}:{6 \over b}\)

Deling (1)
0095 - Breuken herleiden - basis - dynamic variables

d

\({3 \over a}:{6 \over b}={3 \over a}⋅{b \over 6}={3b \over 6a}={b \over 2a}\)

1p

opgave 2

Herleid tot één breuk.

1p

\({4 \over 9}:x\)

Deling (2)
0096 - Breuken herleiden - basis - dynamic variables

\({4 \over 9}:x={4 \over 9}:{x \over 1}={4 \over 9}⋅{1 \over x}={4 \over 9x}\)

1p

"