Getal & Ruimte (13e editie) - 2 havo/vwo
'Stelling van Pythagoras'.
| 2 havo/vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=25\text{,}\) \(L\kern{-.8pt}M=44\) en \(\angle \text{L}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(K\kern{-.8pt}M\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis - 1ms ○ Pythagoras in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}L^2+L\kern{-.8pt}M^2=K\kern{-.8pt}M^2\text{.}\) 1p ○ \(K\kern{-.8pt}M^2=25^2+44^2=2\,561\text{.}\) 1p ○ \(K\kern{-.8pt}M=\sqrt{2\,561}≈50{,}6\text{.}\) 1p |
|
| 2 havo/vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=41\text{,}\) \(Q\kern{-.8pt}R=55\) en \(\angle \text{P}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(P\kern{-.8pt}Q\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis - 0ms ○ Pythagoras in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}R^2+P\kern{-.8pt}Q^2=Q\kern{-.8pt}R^2\) ofwel \(41^2+P\kern{-.8pt}Q^2=55^2\text{.}\) 1p ○ \(P\kern{-.8pt}Q^2=55^2-41^2=1\,344\text{.}\) 1p ○ \(P\kern{-.8pt}Q=\sqrt{1\,344}≈36{,}7\text{.}\) 1p |