Getal & Ruimte (13e editie) - 2 vwo

'Ontbinden in factoren'.

2 vwo 7.1 Buiten haakjes brengen

Ontbinden in factoren (17)

opgave 1

Ontbind in factoren.

1p

a

\(p^2+2p\)

BuitenHaakjes (1)
00hd - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(p^2+2p=p(p+2)\)

1p

1p

b

\(15x^2-25x\)

BuitenHaakjes (2)
00he - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(15x^2-25x=5x(3x-5)\)

1p

1p

c

\(35ab+40a\)

BuitenHaakjes (3)
00hf - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(35ab+40a=5a(7b+8)\)

1p

1p

d

\(40ab+45ac\)

BuitenHaakjes (4)
00hg - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(40ab+45ac=5a(8b+9c)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(9xyz+24xy\)

BuitenHaakjes (5)
00hh - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(9xyz+24xy=3xy(3z+8)\)

1p

1p

b

\(4p^4-14p^3\)

BuitenHaakjes (6)
00hi - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(4p^4-14p^3=2p^3(2p-7)\)

1p

1p

c

\(6a^2-7a^8+a\)

BuitenHaakjes (7)
00hj - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(6a^2-7a^8+a=a(6a-7a^7+1)\)

1p

1p

d

\(18a^3b^5+21a^4b\)

BuitenHaakjes (8)
00hk - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(18a^3b^5+21a^4b=3a^3b(6b^4+7a)\)

1p

opgave 3

Ontbind in factoren.

1p

a

\(x^2-100\)

Verschil2Kwadraten (1)
00hl - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(x^2-100=(x-10)(x+10)\)

1p

1p

b

\(64x^2-49\)

Verschil2Kwadraten (2)
00hm - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(64x^2-49=(8x-7)(8x+7)\)

1p

1p

c

\(121-81p^2\)

Verschil2Kwadraten (3)
00hs - Ontbinden in factoren - basis - 1ms - dynamic variables

c

\(121-81p^2=(11-9p)(11+9p)\)

1p

1p

d

\(81x^{12}-100\)

Verschil2Kwadraten (4)
00ht - Ontbinden in factoren - basis - 1ms - dynamic variables

d

\(81x^{12}-100=(9x^6-10)(9x^6+10)\)

1p

opgave 4

Ontbind in factoren.

1p

a

\(80a^2-45\)

Verschil2Kwadraten (5)
00hu - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(80a^2-45=5(16a^2-9)=5(4a-3)(4a+3)\)

1p

1p

b

\(50a^3-18a\)

Verschil2Kwadraten (6)
00hv - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(50a^3-18a=2a(25a^2-9)=2a(5a-3)(5a+3)\)

1p

1p

c

\(x^{12}-16\)

Verschil2Kwadraten (7)
00hw - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(x^{12}-16=(x^6-4)(x^6+4)=(x^3-2)(x^3+2)(x^6+4)\)

1p

1p

d

\(x^{11}-16x^3\)

Verschil2Kwadraten (8)
00hx - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(x^{11}-16x^3=x^3(x^8-16)=x^3(x^4-4)(x^4+4)=x^3(x^2-2)(x^2+2)(x^4+4)\)

1p

opgave 5

Ontbind in factoren.

1p

\(a^6b^2-121c^6\)

Verschil2Kwadraten (9)
00hz - Ontbinden in factoren - basis - 0ms - dynamic variables

\(a^6b^2-121c^6=(a^3b-11c^3)(a^3b+11c^3)\)

1p

2 vwo 7.2 De product-som methode

Ontbinden in factoren (6)

opgave 1

Ontbind in factoren.

1p

a

\(x^2+9x+20\)

SomProductmethode (1)
00hn - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(x^2+9x+20=(x+4)(x+5)\)

1p

1p

b

\(p^2-7p-18\)

SomProductmethode (2)
00ho - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(p^2-7p-18=(p+2)(p-9)\)

1p

1p

c

\(a^2-8a+12\)

SomProductmethode (3)
00hp - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(a^2-8a+12=(a-6)(a-2)\)

1p

1p

d

\(x^2+14x+49\)

SomProductmethode (4)
00hq - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(x^2+14x+49=(x+7)(x+7)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(5a^5-30a^4+25a^3\)

SomProductmethode (5)
00hr - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(5a^5-30a^4+25a^3=5a^3(a^2-6a+5)=5a^3(a-5)(a-1)\)

1p

1p

b

\(x^4+3x^2-40\)

SomProductmethode (6)
00hy - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(x^4+3x^2-40=(x^2+8)(x^2-5)\)

1p

"