Getal & Ruimte (13e editie) - 2 vwo
'Ontbinden in factoren'.
| 2 vwo | 7.1 Buiten haakjes brengen |
opgave 1Ontbind in factoren. 1p a \(p^2+2p\) BuitenHaakjes (1) 00hd - Ontbinden in factoren - basis - 0ms - dynamic variables a \(p^2+2p=p(p+2)\) 1p 1p b \(15x^2-25x\) BuitenHaakjes (2) 00he - Ontbinden in factoren - basis - 0ms - dynamic variables b \(15x^2-25x=5x(3x-5)\) 1p 1p c \(35ab+40a\) BuitenHaakjes (3) 00hf - Ontbinden in factoren - basis - 0ms - dynamic variables c \(35ab+40a=5a(7b+8)\) 1p 1p d \(40ab+45ac\) BuitenHaakjes (4) 00hg - Ontbinden in factoren - basis - 0ms - dynamic variables d \(40ab+45ac=5a(8b+9c)\) 1p opgave 2Ontbind in factoren. 1p a \(9xyz+24xy\) BuitenHaakjes (5) 00hh - Ontbinden in factoren - basis - 0ms - dynamic variables a \(9xyz+24xy=3xy(3z+8)\) 1p 1p b \(4p^4-14p^3\) BuitenHaakjes (6) 00hi - Ontbinden in factoren - basis - 0ms - dynamic variables b \(4p^4-14p^3=2p^3(2p-7)\) 1p 1p c \(6a^2-7a^8+a\) BuitenHaakjes (7) 00hj - Ontbinden in factoren - basis - 0ms - dynamic variables c \(6a^2-7a^8+a=a(6a-7a^7+1)\) 1p 1p d \(18a^3b^5+21a^4b\) BuitenHaakjes (8) 00hk - Ontbinden in factoren - basis - 0ms - dynamic variables d \(18a^3b^5+21a^4b=3a^3b(6b^4+7a)\) 1p opgave 3Ontbind in factoren. 1p a \(x^2-100\) Verschil2Kwadraten (1) 00hl - Ontbinden in factoren - basis - 0ms - dynamic variables a \(x^2-100=(x-10)(x+10)\) 1p 1p b \(64x^2-49\) Verschil2Kwadraten (2) 00hm - Ontbinden in factoren - basis - 1ms - dynamic variables b \(64x^2-49=(8x-7)(8x+7)\) 1p 1p c \(121-81p^2\) Verschil2Kwadraten (3) 00hs - Ontbinden in factoren - basis - 1ms - dynamic variables c \(121-81p^2=(11-9p)(11+9p)\) 1p 1p d \(81x^{12}-100\) Verschil2Kwadraten (4) 00ht - Ontbinden in factoren - basis - 1ms - dynamic variables d \(81x^{12}-100=(9x^6-10)(9x^6+10)\) 1p opgave 4Ontbind in factoren. 1p a \(80a^2-45\) Verschil2Kwadraten (5) 00hu - Ontbinden in factoren - basis - 1ms - dynamic variables a \(80a^2-45=5(16a^2-9)=5(4a-3)(4a+3)\) 1p 1p b \(50a^3-18a\) Verschil2Kwadraten (6) 00hv - Ontbinden in factoren - basis - 1ms - dynamic variables b \(50a^3-18a=2a(25a^2-9)=2a(5a-3)(5a+3)\) 1p 1p c \(x^{12}-16\) Verschil2Kwadraten (7) 00hw - Ontbinden in factoren - basis - 0ms - dynamic variables c \(x^{12}-16=(x^6-4)(x^6+4)=(x^3-2)(x^3+2)(x^6+4)\) 1p 1p d \(x^{11}-16x^3\) Verschil2Kwadraten (8) 00hx - Ontbinden in factoren - basis - 0ms - dynamic variables d \(x^{11}-16x^3=x^3(x^8-16)=x^3(x^4-4)(x^4+4)=x^3(x^2-2)(x^2+2)(x^4+4)\) 1p opgave 5Ontbind in factoren. 1p \(a^6b^2-121c^6\) Verschil2Kwadraten (9) 00hz - Ontbinden in factoren - basis - 0ms - dynamic variables ○ \(a^6b^2-121c^6=(a^3b-11c^3)(a^3b+11c^3)\) 1p |
|
| 2 vwo | 7.2 De product-som methode |
opgave 1Ontbind in factoren. 1p a \(x^2+9x+20\) SomProductmethode (1) 00hn - Ontbinden in factoren - basis - 0ms - dynamic variables a \(x^2+9x+20=(x+4)(x+5)\) 1p 1p b \(p^2-7p-18\) SomProductmethode (2) 00ho - Ontbinden in factoren - basis - 0ms - dynamic variables b \(p^2-7p-18=(p+2)(p-9)\) 1p 1p c \(a^2-8a+12\) SomProductmethode (3) 00hp - Ontbinden in factoren - basis - 0ms - dynamic variables c \(a^2-8a+12=(a-6)(a-2)\) 1p 1p d \(x^2+14x+49\) SomProductmethode (4) 00hq - Ontbinden in factoren - basis - 0ms - dynamic variables d \(x^2+14x+49=(x+7)(x+7)\) 1p opgave 2Ontbind in factoren. 1p a \(5a^5-30a^4+25a^3\) SomProductmethode (5) 00hr - Ontbinden in factoren - basis - 1ms - dynamic variables a \(5a^5-30a^4+25a^3=5a^3(a^2-6a+5)=5a^3(a-5)(a-1)\) 1p 1p b \(x^4+3x^2-40\) SomProductmethode (6) 00hy - Ontbinden in factoren - basis - 0ms - dynamic variables b \(x^4+3x^2-40=(x^2+8)(x^2-5)\) 1p |