Getal & Ruimte (13e editie) - 2 vwo
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{32}+\sqrt{8}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis a \(\sqrt{32}+\sqrt{8}=\sqrt{16}⋅\sqrt{2}+\sqrt{4}⋅\sqrt{2}=4\sqrt{2}+2\sqrt{2}\text{.}\) 1p ○ \(4\sqrt{2}+2\sqrt{2}=6\sqrt{2}\text{.}\) 1p 1p b \(\sqrt{500}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis b \(\sqrt{500}=\sqrt{100}⋅\sqrt{5}=10\sqrt{5}\text{.}\) 1p 1p c \(4\sqrt{50}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis c \(4\sqrt{50}=4⋅\sqrt{25}⋅\sqrt{2}=4⋅5⋅\sqrt{2}=20\sqrt{2}\text{.}\) 1p 2p d \(7\sqrt{75}+3\sqrt{300}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis d \(7\sqrt{75}+3\sqrt{300}=7⋅\sqrt{25}⋅\sqrt{3}+3⋅\sqrt{100}⋅\sqrt{3}\text{.}\) 1p ○ \(7⋅5⋅\sqrt{3}+3⋅10⋅\sqrt{3}=35\sqrt{3}+30\sqrt{3}=65\sqrt{3}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{\frac{1}{81}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis ○ \(\sqrt{\frac{1}{81}}={\sqrt{1} \over \sqrt{81}}=\frac{1}{9}\text{.}\) 1p |