Getal & Ruimte (13e editie) - 3 havo
'Sinus, cosinus en tangens'.
| 3 havo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=44\text{,}\) \(\angle Q=32\degree\) en \(\angle R=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis - 0ms a Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle Q)={P\kern{-.8pt}R \over Q\kern{-.8pt}R}\) ofwel \(\tan(32\degree)={P\kern{-.8pt}R \over 44}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}R=44⋅\tan(32\degree)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R≈27{,}5\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=39\text{,}\) \(\angle B=38\degree\) en \(\angle C=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis - 0ms b Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle B)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\tan(38\degree)={39 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={39 \over \tan(38\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈49{,}9\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=28\text{,}\) \(Q\kern{-.8pt}R=32\) en \(\angle Q=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis - 0ms c Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\tan(\angle P)={32 \over 28}\text{.}\) 1p ○ Hieruit volgt \(\angle P=\tan^{-1}({32 \over 28})\text{.}\) 1p ○ Dus \(\angle P≈48{,}8\degree\text{.}\) 1p |
|
| 3 havo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=41\text{,}\) \(\angle R=51\degree\) en \(\angle P=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis - 0ms a Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle R)={P\kern{-.8pt}Q \over Q\kern{-.8pt}R}\) ofwel \(\sin(51\degree)={P\kern{-.8pt}Q \over 41}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}Q=41⋅\sin(51\degree)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}Q≈31{,}9\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=38\text{,}\) \(\angle B=54\degree\) en \(\angle C=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis - 0ms b Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle B)={A\kern{-.8pt}C \over A\kern{-.8pt}B}\) ofwel \(\sin(54\degree)={38 \over A\kern{-.8pt}B}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B={38 \over \sin(54\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈47{,}0\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=34\text{,}\) \(P\kern{-.8pt}R=66\) en \(\angle Q=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis - 0ms c Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}R}\) ofwel \(\sin(\angle P)={34 \over 66}\text{.}\) 1p ○ Hieruit volgt \(\angle P=\sin^{-1}({34 \over 66})\text{.}\) 1p ○ Dus \(\angle P≈31{,}0\degree\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=77\text{,}\) \(\angle K=54\degree\) en \(\angle L=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis - 0ms d Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle K)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\cos(54\degree)={K\kern{-.8pt}L \over 77}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L=77⋅\cos(54\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈45{,}3\text{.}\) 1p opgave 23p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=54\text{,}\) \(\angle C=48\degree\) en \(\angle A=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis - 0ms a Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle C)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\cos(48\degree)={54 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={54 \over \cos(48\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈80{,}7\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=26\text{,}\) \(K\kern{-.8pt}M=52\) en \(\angle L=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis - 0ms b Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle K)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\cos(\angle K)={26 \over 52}\text{.}\) 1p ○ Hieruit volgt \(\angle K=\cos^{-1}({26 \over 52})\text{.}\) 1p ○ Dus \(\angle K=60{,}0\degree\text{.}\) 1p |