Getal & Ruimte (13e editie) - 3 havo
'Sinus, cosinus en tangens'.
| 3 havo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=48\text{,}\) \(\angle M=51\degree\) en \(\angle K=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis a Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle M)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\tan(51\degree)={K\kern{-.8pt}L \over 48}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L=48⋅\tan(51\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈59{,}3\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=31\text{,}\) \(\angle M=35\degree\) en \(\angle K=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis b Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle M)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\tan(35\degree)={31 \over K\kern{-.8pt}M}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M={31 \over \tan(35\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈44{,}3\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=33\text{,}\) \(P\kern{-.8pt}Q=36\) en \(\angle P=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis c Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle R)={P\kern{-.8pt}Q \over P\kern{-.8pt}R}\) ofwel \(\tan(\angle R)={36 \over 33}\text{.}\) 1p ○ Hieruit volgt \(\angle R=\tan^{-1}({36 \over 33})\text{.}\) 1p ○ Dus \(\angle R≈47{,}5\degree\text{.}\) 1p |
|
| 3 havo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=64\text{,}\) \(\angle L=52\degree\) en \(\angle M=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis a Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle L)={K\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\sin(52\degree)={K\kern{-.8pt}M \over 64}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M=64⋅\sin(52\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈50{,}4\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=57\text{,}\) \(\angle B=36\degree\) en \(\angle C=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis b Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle B)={A\kern{-.8pt}C \over A\kern{-.8pt}B}\) ofwel \(\sin(36\degree)={57 \over A\kern{-.8pt}B}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B={57 \over \sin(36\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈97{,}0\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=60\text{,}\) \(A\kern{-.8pt}C=82\) en \(\angle B=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis c Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle A)={B\kern{-.8pt}C \over A\kern{-.8pt}C}\) ofwel \(\sin(\angle A)={60 \over 82}\text{.}\) 1p ○ Hieruit volgt \(\angle A=\sin^{-1}({60 \over 82})\text{.}\) 1p ○ Dus \(\angle A≈47{,}0\degree\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=57\text{,}\) \(\angle R=58\degree\) en \(\angle P=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis d Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle R)={P\kern{-.8pt}R \over Q\kern{-.8pt}R}\) ofwel \(\cos(58\degree)={P\kern{-.8pt}R \over 57}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}R=57⋅\cos(58\degree)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R≈30{,}2\text{.}\) 1p opgave 23p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=51\text{,}\) \(\angle R=53\degree\) en \(\angle P=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis a Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle R)={P\kern{-.8pt}R \over Q\kern{-.8pt}R}\) ofwel \(\cos(53\degree)={51 \over Q\kern{-.8pt}R}\text{.}\) 1p ○ Hieruit volgt \(Q\kern{-.8pt}R={51 \over \cos(53\degree)}\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R≈84{,}7\text{.}\) 1p 3p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=56\text{,}\) \(Q\kern{-.8pt}R=61\) en \(\angle P=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis b Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle R)={P\kern{-.8pt}R \over Q\kern{-.8pt}R}\) ofwel \(\cos(\angle R)={56 \over 61}\text{.}\) 1p ○ Hieruit volgt \(\angle R=\cos^{-1}({56 \over 61})\text{.}\) 1p ○ Dus \(\angle R≈23{,}4\degree\text{.}\) 1p |