Getal & Ruimte (13e editie) - 3 havo
'Stelling van Pythagoras'.
| 2 havo/vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=30\text{,}\) \(A\kern{-.8pt}C=13\) en \(\angle \text{C}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(A\kern{-.8pt}B\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis - 1ms ○ Pythagoras in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2+A\kern{-.8pt}C^2=A\kern{-.8pt}B^2\text{.}\) 1p ○ \(A\kern{-.8pt}B^2=30^2+13^2=1\,069\text{.}\) 1p ○ \(A\kern{-.8pt}B=\sqrt{1\,069}≈32{,}7\text{.}\) 1p |
|
| 2 havo/vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=21\text{,}\) \(Q\kern{-.8pt}R=52\) en \(\angle \text{P}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(P\kern{-.8pt}Q\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis - 0ms ○ Pythagoras in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}R^2+P\kern{-.8pt}Q^2=Q\kern{-.8pt}R^2\) ofwel \(21^2+P\kern{-.8pt}Q^2=52^2\text{.}\) 1p ○ \(P\kern{-.8pt}Q^2=52^2-21^2=2\,263\text{.}\) 1p ○ \(P\kern{-.8pt}Q=\sqrt{2\,263}≈47{,}6\text{.}\) 1p |