Getal & Ruimte (13e editie) - 3 vwo
'Ontbinden in factoren'.
| 2 vwo | 7.1 Buiten haakjes brengen |
opgave 1Ontbind in factoren. 1p a \(a^2+3a\) BuitenHaakjes (1) 00hd - Ontbinden in factoren - basis - 0ms - dynamic variables a \(a^2+3a=a(a+3)\) 1p 1p b \(4x^2+9x\) BuitenHaakjes (2) 00he - Ontbinden in factoren - basis - 0ms - dynamic variables b \(4x^2+9x=x(4x+9)\) 1p 1p c \(20ab+36a\) BuitenHaakjes (3) 00hf - Ontbinden in factoren - basis - 0ms - dynamic variables c \(20ab+36a=4a(5b+9)\) 1p 1p d \(12xy+15xz\) BuitenHaakjes (4) 00hg - Ontbinden in factoren - basis - 0ms - dynamic variables d \(12xy+15xz=3x(4y+5z)\) 1p opgave 2Ontbind in factoren. 1p a \(12pqr+27pq\) BuitenHaakjes (5) 00hh - Ontbinden in factoren - basis - 0ms - dynamic variables a \(12pqr+27pq=3pq(4r+9)\) 1p 1p b \(24x^2-28x^4\) BuitenHaakjes (6) 00hi - Ontbinden in factoren - basis - 0ms - dynamic variables b \(24x^2-28x^4=4x^2(6-7x^2)\) 1p 1p c \(4a^2-7a+a^4\) BuitenHaakjes (7) 00hj - Ontbinden in factoren - basis - 0ms - dynamic variables c \(4a^2-7a+a^4=a(4a-7+a^3)\) 1p 1p d \(15x^5y+40x^4y^4\) BuitenHaakjes (8) 00hk - Ontbinden in factoren - basis - 0ms - dynamic variables d \(15x^5y+40x^4y^4=5x^4y(3x+8y^3)\) 1p opgave 3Ontbind in factoren. 1p a \(a^2-144\) Verschil2Kwadraten (1) 00hl - Ontbinden in factoren - basis - 0ms - dynamic variables a \(a^2-144=(a-12)(a+12)\) 1p 1p b \(4p^2-1\) Verschil2Kwadraten (2) 00hm - Ontbinden in factoren - basis - 1ms - dynamic variables b \(4p^2-1=(2p-1)(2p+1)\) 1p 1p c \(64-25a^2\) Verschil2Kwadraten (3) 00hs - Ontbinden in factoren - basis - 1ms - dynamic variables c \(64-25a^2=(8-5a)(8+5a)\) 1p 1p d \(49a^6-4\) Verschil2Kwadraten (4) 00ht - Ontbinden in factoren - basis - 0ms - dynamic variables d \(49a^6-4=(7a^3-2)(7a^3+2)\) 1p opgave 4Ontbind in factoren. 1p a \(5x^2-20\) Verschil2Kwadraten (5) 00hu - Ontbinden in factoren - basis - 1ms - dynamic variables a \(5x^2-20=5(x^2-4)=5(x-2)(x+2)\) 1p 1p b \(5x^3-20x\) Verschil2Kwadraten (6) 00hv - Ontbinden in factoren - basis - 1ms - dynamic variables b \(5x^3-20x=5x(x^2-4)=5x(x-2)(x+2)\) 1p 1p c \(p^4-1\) Verschil2Kwadraten (7) 00hw - Ontbinden in factoren - basis - 0ms - dynamic variables c \(p^4-1=(p^2-1)(p^2+1)=(p-1)(p+1)(p^2+1)\) 1p 1p d \(2x^5-162x\) Verschil2Kwadraten (8) 00hx - Ontbinden in factoren - basis - 0ms - dynamic variables d \(2x^5-162x=2x(x^4-81)=2x(x^2-9)(x^2+9)=2x(x-3)(x+3)(x^2+9)\) 1p opgave 5Ontbind in factoren. 1p \(x^6y^{10}-25z^2\) Verschil2Kwadraten (9) 00hz - Ontbinden in factoren - basis - 0ms - dynamic variables ○ \(x^6y^{10}-25z^2=(x^3y^5-5z)(x^3y^5+5z)\) 1p |
|
| 2 vwo | 7.2 De product-som methode |
opgave 1Ontbind in factoren. 1p a \(a^2+7a+12\) SomProductmethode (1) 00hn - Ontbinden in factoren - basis - 0ms - dynamic variables a \(a^2+7a+12=(a+3)(a+4)\) 1p 1p b \(p^2+3p-54\) SomProductmethode (2) 00ho - Ontbinden in factoren - basis - 0ms - dynamic variables b \(p^2+3p-54=(p+9)(p-6)\) 1p 1p c \(x^2-6x+5\) SomProductmethode (3) 00hp - Ontbinden in factoren - basis - 0ms - dynamic variables c \(x^2-6x+5=(x-1)(x-5)\) 1p 1p d \(a^2-18a+81\) SomProductmethode (4) 00hq - Ontbinden in factoren - basis - 0ms - dynamic variables d \(a^2-18a+81=(a-9)(a-9)\) 1p opgave 2Ontbind in factoren. 1p a \(2x^3-18x^2+40x\) SomProductmethode (5) 00hr - Ontbinden in factoren - basis - 1ms - dynamic variables a \(2x^3-18x^2+40x=2x(x^2-9x+20)=2x(x-5)(x-4)\) 1p 1p b \(x^4-3x^2-18\) SomProductmethode (6) 00hy - Ontbinden in factoren - basis - 0ms - dynamic variables b \(x^4-3x^2-18=(x^2-6)(x^2+3)\) 1p |