Getal & Ruimte (13e editie) - 3 vwo

'Ontbinden in factoren'.

2 vwo 7.1 Buiten haakjes brengen

Ontbinden in factoren (17)

opgave 1

Ontbind in factoren.

1p

a

\(p^2+5p\)

BuitenHaakjes (1)
00hd - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(p^2+5p=p(p+5)\)

1p

1p

b

\(8x^2+20x\)

BuitenHaakjes (2)
00he - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(8x^2+20x=4x(2x+5)\)

1p

1p

c

\(16ab+20a\)

BuitenHaakjes (3)
00hf - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(16ab+20a=4a(4b+5)\)

1p

1p

d

\(32xy+36xz\)

BuitenHaakjes (4)
00hg - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(32xy+36xz=4x(8y+9z)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(20abc+35ab\)

BuitenHaakjes (5)
00hh - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(20abc+35ab=5ab(4c+7)\)

1p

1p

b

\(6x^2-9x^4\)

BuitenHaakjes (6)
00hi - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(6x^2-9x^4=3x^2(2-3x^2)\)

1p

1p

c

\(7a^8-8a^4+a^7\)

BuitenHaakjes (7)
00hj - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(7a^8-8a^4+a^7=a^4(7a^4-8+a^3)\)

1p

1p

d

\(6a^5b^3-14ab\)

BuitenHaakjes (8)
00hk - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(6a^5b^3-14ab=2ab(3a^4b^2-7)\)

1p

opgave 3

Ontbind in factoren.

1p

a

\(p^2-36\)

Verschil2Kwadraten (1)
00hl - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(p^2-36=(p-6)(p+6)\)

1p

1p

b

\(144x^2-49\)

Verschil2Kwadraten (2)
00hm - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(144x^2-49=(12x-7)(12x+7)\)

1p

1p

c

\(121-4a^2\)

Verschil2Kwadraten (3)
00hs - Ontbinden in factoren - basis - 1ms - dynamic variables

c

\(121-4a^2=(11-2a)(11+2a)\)

1p

1p

d

\(64x^6-121\)

Verschil2Kwadraten (4)
00ht - Ontbinden in factoren - basis - 1ms - dynamic variables

d

\(64x^6-121=(8x^3-11)(8x^3+11)\)

1p

opgave 4

Ontbind in factoren.

1p

a

\(32x^2-18\)

Verschil2Kwadraten (5)
00hu - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(32x^2-18=2(16x^2-9)=2(4x-3)(4x+3)\)

1p

1p

b

\(50a^3-18a\)

Verschil2Kwadraten (6)
00hv - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(50a^3-18a=2a(25a^2-9)=2a(5a-3)(5a+3)\)

1p

1p

c

\(p^4-1\)

Verschil2Kwadraten (7)
00hw - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(p^4-1=(p^2-1)(p^2+1)=(p-1)(p+1)(p^2+1)\)

1p

1p

d

\(3a^{10}-243a^2\)

Verschil2Kwadraten (8)
00hx - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(3a^{10}-243a^2=3a^2(a^8-81)=3a^2(a^4-9)(a^4+9)=3a^2(a^2-3)(a^2+3)(a^4+9)\)

1p

opgave 5

Ontbind in factoren.

1p

\(x^2y^6-z^4\)

Verschil2Kwadraten (9)
00hz - Ontbinden in factoren - basis - 0ms - dynamic variables

\(x^2y^6-z^4=(xy^3-z^2)(xy^3+z^2)\)

1p

2 vwo 7.2 De product-som methode

Ontbinden in factoren (6)

opgave 1

Ontbind in factoren.

1p

a

\(a^2+8a+15\)

SomProductmethode (1)
00hn - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(a^2+8a+15=(a+3)(a+5)\)

1p

1p

b

\(x^2-x-20\)

SomProductmethode (2)
00ho - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(x^2-x-20=(x-5)(x+4)\)

1p

1p

c

\(x^2-9x+18\)

SomProductmethode (3)
00hp - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(x^2-9x+18=(x-3)(x-6)\)

1p

1p

d

\(p^2+14p+49\)

SomProductmethode (4)
00hq - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(p^2+14p+49=(p+7)(p+7)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(a^4-8a^3+15a^2\)

SomProductmethode (5)
00hr - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(a^4-8a^3+15a^2=a^2(a^2-8a+15)=a^2(a-3)(a-5)\)

1p

1p

b

\(p^6+3p^3-28\)

SomProductmethode (6)
00hy - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(p^6+3p^3-28=(p^3-4)(p^3+7)\)

1p

"