Getal & Ruimte (13e editie) - 3 vwo

'Ontbinden in factoren'.

2 vwo 7.1 Buiten haakjes brengen

Ontbinden in factoren (17)

opgave 1

Ontbind in factoren.

1p

a

\(a^2+3a\)

BuitenHaakjes (1)
00hd - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(a^2+3a=a(a+3)\)

1p

1p

b

\(4x^2+9x\)

BuitenHaakjes (2)
00he - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(4x^2+9x=x(4x+9)\)

1p

1p

c

\(20ab+36a\)

BuitenHaakjes (3)
00hf - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(20ab+36a=4a(5b+9)\)

1p

1p

d

\(12xy+15xz\)

BuitenHaakjes (4)
00hg - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(12xy+15xz=3x(4y+5z)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(12pqr+27pq\)

BuitenHaakjes (5)
00hh - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(12pqr+27pq=3pq(4r+9)\)

1p

1p

b

\(24x^2-28x^4\)

BuitenHaakjes (6)
00hi - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(24x^2-28x^4=4x^2(6-7x^2)\)

1p

1p

c

\(4a^2-7a+a^4\)

BuitenHaakjes (7)
00hj - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(4a^2-7a+a^4=a(4a-7+a^3)\)

1p

1p

d

\(15x^5y+40x^4y^4\)

BuitenHaakjes (8)
00hk - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(15x^5y+40x^4y^4=5x^4y(3x+8y^3)\)

1p

opgave 3

Ontbind in factoren.

1p

a

\(a^2-144\)

Verschil2Kwadraten (1)
00hl - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(a^2-144=(a-12)(a+12)\)

1p

1p

b

\(4p^2-1\)

Verschil2Kwadraten (2)
00hm - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(4p^2-1=(2p-1)(2p+1)\)

1p

1p

c

\(64-25a^2\)

Verschil2Kwadraten (3)
00hs - Ontbinden in factoren - basis - 1ms - dynamic variables

c

\(64-25a^2=(8-5a)(8+5a)\)

1p

1p

d

\(49a^6-4\)

Verschil2Kwadraten (4)
00ht - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(49a^6-4=(7a^3-2)(7a^3+2)\)

1p

opgave 4

Ontbind in factoren.

1p

a

\(5x^2-20\)

Verschil2Kwadraten (5)
00hu - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(5x^2-20=5(x^2-4)=5(x-2)(x+2)\)

1p

1p

b

\(5x^3-20x\)

Verschil2Kwadraten (6)
00hv - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(5x^3-20x=5x(x^2-4)=5x(x-2)(x+2)\)

1p

1p

c

\(p^4-1\)

Verschil2Kwadraten (7)
00hw - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(p^4-1=(p^2-1)(p^2+1)=(p-1)(p+1)(p^2+1)\)

1p

1p

d

\(2x^5-162x\)

Verschil2Kwadraten (8)
00hx - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(2x^5-162x=2x(x^4-81)=2x(x^2-9)(x^2+9)=2x(x-3)(x+3)(x^2+9)\)

1p

opgave 5

Ontbind in factoren.

1p

\(x^6y^{10}-25z^2\)

Verschil2Kwadraten (9)
00hz - Ontbinden in factoren - basis - 0ms - dynamic variables

\(x^6y^{10}-25z^2=(x^3y^5-5z)(x^3y^5+5z)\)

1p

2 vwo 7.2 De product-som methode

Ontbinden in factoren (6)

opgave 1

Ontbind in factoren.

1p

a

\(a^2+7a+12\)

SomProductmethode (1)
00hn - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(a^2+7a+12=(a+3)(a+4)\)

1p

1p

b

\(p^2+3p-54\)

SomProductmethode (2)
00ho - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(p^2+3p-54=(p+9)(p-6)\)

1p

1p

c

\(x^2-6x+5\)

SomProductmethode (3)
00hp - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(x^2-6x+5=(x-1)(x-5)\)

1p

1p

d

\(a^2-18a+81\)

SomProductmethode (4)
00hq - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(a^2-18a+81=(a-9)(a-9)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(2x^3-18x^2+40x\)

SomProductmethode (5)
00hr - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(2x^3-18x^2+40x=2x(x^2-9x+20)=2x(x-5)(x-4)\)

1p

1p

b

\(x^4-3x^2-18\)

SomProductmethode (6)
00hy - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(x^4-3x^2-18=(x^2-6)(x^2+3)\)

1p

"