Getal & Ruimte (13e editie) - 3 vwo
'Sinus, cosinus en tangens'.
| 3 vwo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=35\text{,}\) \(\angle K=40\degree\) en \(\angle L=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis - 0ms a Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle K)={L\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\tan(40\degree)={L\kern{-.8pt}M \over 35}\text{.}\) 1p ○ Hieruit volgt \(L\kern{-.8pt}M=35⋅\tan(40\degree)\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M≈29{,}4\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=56\text{,}\) \(\angle C=59\degree\) en \(\angle A=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis - 0ms b Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle C)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\tan(59\degree)={56 \over A\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}C={56 \over \tan(59\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C≈33{,}6\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=34\text{,}\) \(L\kern{-.8pt}M=43\) en \(\angle L=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis - 0ms c Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle K)={L\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\tan(\angle K)={43 \over 34}\text{.}\) 1p ○ Hieruit volgt \(\angle K=\tan^{-1}({43 \over 34})\text{.}\) 1p ○ Dus \(\angle K≈51{,}7\degree\text{.}\) 1p |
|
| 3 vwo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=54\text{,}\) \(\angle Q=48\degree\) en \(\angle R=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis - 0ms a Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle Q)={P\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\sin(48\degree)={P\kern{-.8pt}R \over 54}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}R=54⋅\sin(48\degree)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R≈40{,}1\text{.}\) 1p 3p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=36\text{,}\) \(\angle P=43\degree\) en \(\angle Q=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis - 0ms b Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}R}\) ofwel \(\sin(43\degree)={36 \over P\kern{-.8pt}R}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}R={36 \over \sin(43\degree)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R≈52{,}8\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=30\text{,}\) \(K\kern{-.8pt}L=49\) en \(\angle M=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis - 0ms c Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle L)={K\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\sin(\angle L)={30 \over 49}\text{.}\) 1p ○ Hieruit volgt \(\angle L=\sin^{-1}({30 \over 49})\text{.}\) 1p ○ Dus \(\angle L≈37{,}8\degree\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=63\text{,}\) \(\angle K=47\degree\) en \(\angle L=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis - 0ms d Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle K)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\cos(47\degree)={K\kern{-.8pt}L \over 63}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L=63⋅\cos(47\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈43{,}0\text{.}\) 1p opgave 23p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=51\text{,}\) \(\angle M=46\degree\) en \(\angle K=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis - 0ms a Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle M)={K\kern{-.8pt}M \over L\kern{-.8pt}M}\) ofwel \(\cos(46\degree)={51 \over L\kern{-.8pt}M}\text{.}\) 1p ○ Hieruit volgt \(L\kern{-.8pt}M={51 \over \cos(46\degree)}\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M≈73{,}4\text{.}\) 1p 3p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=44\text{,}\) \(P\kern{-.8pt}R=68\) en \(\angle Q=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis - 0ms b Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle P)={P\kern{-.8pt}Q \over P\kern{-.8pt}R}\) ofwel \(\cos(\angle P)={44 \over 68}\text{.}\) 1p ○ Hieruit volgt \(\angle P=\cos^{-1}({44 \over 68})\text{.}\) 1p ○ Dus \(\angle P≈49{,}7\degree\text{.}\) 1p |