Getal & Ruimte (13e editie) - 3 vwo
'Sinus, cosinus en tangens'.
| 3 vwo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=51\text{,}\) \(\angle K=53\degree\) en \(\angle L=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis - 0ms a Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle K)={L\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\tan(53\degree)={L\kern{-.8pt}M \over 51}\text{.}\) 1p ○ Hieruit volgt \(L\kern{-.8pt}M=51⋅\tan(53\degree)\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M≈67{,}7\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=21\text{,}\) \(\angle K=52\degree\) en \(\angle L=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis - 0ms b Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle K)={L\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\tan(52\degree)={21 \over K\kern{-.8pt}L}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L={21 \over \tan(52\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈16{,}4\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=37\text{,}\) \(A\kern{-.8pt}C=25\) en \(\angle C=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis - 0ms c Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle B)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\tan(\angle B)={25 \over 37}\text{.}\) 1p ○ Hieruit volgt \(\angle B=\tan^{-1}({25 \over 37})\text{.}\) 1p ○ Dus \(\angle B≈34{,}0\degree\text{.}\) 1p |
|
| 3 vwo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=56\text{,}\) \(\angle Q=40\degree\) en \(\angle R=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis - 0ms a Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle Q)={P\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\sin(40\degree)={P\kern{-.8pt}R \over 56}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}R=56⋅\sin(40\degree)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R≈36{,}0\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=20\text{,}\) \(\angle L=47\degree\) en \(\angle M=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis - 0ms b Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle L)={K\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\sin(47\degree)={20 \over K\kern{-.8pt}L}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L={20 \over \sin(47\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈27{,}3\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=20\text{,}\) \(L\kern{-.8pt}M=33\) en \(\angle K=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis - 0ms c Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle M)={K\kern{-.8pt}L \over L\kern{-.8pt}M}\) ofwel \(\sin(\angle M)={20 \over 33}\text{.}\) 1p ○ Hieruit volgt \(\angle M=\sin^{-1}({20 \over 33})\text{.}\) 1p ○ Dus \(\angle M≈37{,}3\degree\text{.}\) 1p 3p d Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=62\text{,}\) \(\angle A=51\degree\) en \(\angle B=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis - 0ms d Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle A)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\cos(51\degree)={A\kern{-.8pt}B \over 62}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B=62⋅\cos(51\degree)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈39{,}0\text{.}\) 1p opgave 23p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=22\text{,}\) \(\angle K=34\degree\) en \(\angle L=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis - 0ms a Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle K)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\cos(34\degree)={22 \over K\kern{-.8pt}M}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M={22 \over \cos(34\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈26{,}5\text{.}\) 1p 3p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=52\text{,}\) \(Q\kern{-.8pt}R=69\) en \(\angle P=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis - 0ms b Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle R)={P\kern{-.8pt}R \over Q\kern{-.8pt}R}\) ofwel \(\cos(\angle R)={52 \over 69}\text{.}\) 1p ○ Hieruit volgt \(\angle R=\cos^{-1}({52 \over 69})\text{.}\) 1p ○ Dus \(\angle R≈41{,}1\degree\text{.}\) 1p |