Getal & Ruimte (13e editie) - 3 vwo
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{500}+\sqrt{125}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis a \(\sqrt{500}+\sqrt{125}=\sqrt{100}⋅\sqrt{5}+\sqrt{25}⋅\sqrt{5}=10\sqrt{5}+5\sqrt{5}\text{.}\) 1p ○ \(10\sqrt{5}+5\sqrt{5}=15\sqrt{5}\text{.}\) 1p 1p b \(\sqrt{8}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis b \(\sqrt{8}=\sqrt{4}⋅\sqrt{2}=2\sqrt{2}\text{.}\) 1p 1p c \(-7\sqrt{50}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis c \(-7\sqrt{50}=-7⋅\sqrt{25}⋅\sqrt{2}=-7⋅5⋅\sqrt{2}=-35\sqrt{2}\text{.}\) 1p 2p d \(3\sqrt{12}+6\sqrt{75}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis d \(3\sqrt{12}+6\sqrt{75}=3⋅\sqrt{4}⋅\sqrt{3}+6⋅\sqrt{25}⋅\sqrt{3}\text{.}\) 1p ○ \(3⋅2⋅\sqrt{3}+6⋅5⋅\sqrt{3}=6\sqrt{3}+30\sqrt{3}=36\sqrt{3}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{\frac{4}{49}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis ○ \(\sqrt{\frac{4}{49}}={\sqrt{4} \over \sqrt{49}}=\frac{2}{7}\text{.}\) 1p |
|
| 3 vwo | 5.5 Wortels herleiden |
opgave 1Herleid. 1p a \({8 \over 3\sqrt{3}}\) WortelInNoemer 0089 - Wortels vereenvoudigen - basis a \({8 \over 3\sqrt{3}}={8 \over 3\sqrt{3}}⋅{\sqrt{3} \over \sqrt{3}}={8\sqrt{3} \over 3⋅3}=\frac{8}{9}\sqrt{3}\text{.}\) 1p 1p b \(\sqrt{\frac{24}{49}}\) BreukInWortel (2) 008c - Wortels vereenvoudigen - basis b \(\sqrt{\frac{24}{49}}={\sqrt{24} \over \sqrt{49}}={\sqrt{24} \over 7}=\frac{1}{7}\sqrt{24}=\frac{1}{7}⋅2⋅\sqrt{6}=\frac{2}{7}\sqrt{6}\text{.}\) 1p 1p c \(\sqrt{\frac{1}{88}}\) BreukInWortel (3) 008d - Wortels vereenvoudigen - basis c \(\sqrt{\frac{1}{88}}={\sqrt{1} \over \sqrt{88}}={1 \over \sqrt{88}}⋅{\sqrt{88} \over \sqrt{88}}={\sqrt{88} \over 88}=\frac{1}{88}\sqrt{88}=\frac{1}{88}⋅2⋅\sqrt{22}=\frac{1}{44}\sqrt{22}\text{.}\) 1p 1p d \(\sqrt{4\frac{1}{3}}\) BreukInWortel (4) 008e - Wortels vereenvoudigen - basis d \(\sqrt{4\frac{1}{3}}=\sqrt{\frac{13}{3}}={\sqrt{13} \over \sqrt{3}}⋅{\sqrt{3} \over \sqrt{3}}={\sqrt{39} \over 3}=\frac{1}{3}\sqrt{39}\text{.}\) 1p opgave 2Herleid. 1p a \({54\sqrt{60} \over 9\sqrt{5}}\) Delen (4) 00dc - Wortels vereenvoudigen - basis a \({54\sqrt{60} \over 9\sqrt{5}}={54 \over 9}⋅{\sqrt{60} \over \sqrt{5}}=6\sqrt{12}=6⋅\sqrt{4}⋅\sqrt{3}=6⋅2⋅\sqrt{3}=12\sqrt{3}\) 1p 1p b \(4\sqrt{10}⋅3\sqrt{2}\) Vermenigvuldigen (5) 00dd - Wortels vereenvoudigen - basis - data pool: #22 (2ms) b \(4\sqrt{10}⋅3\sqrt{2}=12\sqrt{20}=12⋅\sqrt{4}⋅\sqrt{5}=12⋅2⋅\sqrt{5}=24\sqrt{5}\) 1p |