Getal & Ruimte (13e editie) - 3 vwo
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{500}+\sqrt{20}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{500}+\sqrt{20}=\sqrt{100}⋅\sqrt{5}+\sqrt{4}⋅\sqrt{5}=10\sqrt{5}+2\sqrt{5}\text{.}\) 1p ○ \(10\sqrt{5}+2\sqrt{5}=12\sqrt{5}\text{.}\) 1p 1p b \(\sqrt{20}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{20}=\sqrt{4}⋅\sqrt{5}=2\sqrt{5}\text{.}\) 1p 1p c \(-7\sqrt{175}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(-7\sqrt{175}=-7⋅\sqrt{25}⋅\sqrt{7}=-7⋅5⋅\sqrt{7}=-35\sqrt{7}\text{.}\) 1p 2p d \(6\sqrt{8}-7\sqrt{200}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(6\sqrt{8}-7\sqrt{200}=6⋅\sqrt{4}⋅\sqrt{2}-7⋅\sqrt{100}⋅\sqrt{2}\text{.}\) 1p ○ \(6⋅2⋅\sqrt{2}-7⋅10⋅\sqrt{2}=12\sqrt{2}-70\sqrt{2}=-58\sqrt{2}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{\frac{1}{4}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 0ms ○ \(\sqrt{\frac{1}{4}}={\sqrt{1} \over \sqrt{4}}=\frac{1}{2}\text{.}\) 1p |
|
| 3 vwo | 5.5 Wortels herleiden |
opgave 1Herleid. 1p a \({2 \over 7\sqrt{3}}\) WortelInNoemer 0089 - Wortels vereenvoudigen - basis - 0ms a \({2 \over 7\sqrt{3}}={2 \over 7\sqrt{3}}⋅{\sqrt{3} \over \sqrt{3}}={2\sqrt{3} \over 7⋅3}=\frac{2}{21}\sqrt{3}\text{.}\) 1p 1p b \(\sqrt{3\frac{21}{25}}\) BreukInWortel (2) 008c - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{3\frac{21}{25}}=\sqrt{\frac{96}{25}}={\sqrt{96} \over \sqrt{25}}={\sqrt{96} \over 5}=\frac{1}{5}\sqrt{96}=\frac{1}{5}⋅4⋅\sqrt{6}=\frac{4}{5}\sqrt{6}\text{.}\) 1p 1p c \(\sqrt{\frac{25}{56}}\) BreukInWortel (3) 008d - Wortels vereenvoudigen - basis - 1ms c \(\sqrt{\frac{25}{56}}={\sqrt{25} \over \sqrt{56}}={5 \over \sqrt{56}}⋅{\sqrt{56} \over \sqrt{56}}={5\sqrt{56} \over 56}=\frac{5}{56}\sqrt{56}=\frac{5}{56}⋅2⋅\sqrt{14}=\frac{5}{28}\sqrt{14}\text{.}\) 1p 1p d \(\sqrt{11\frac{1}{2}}\) BreukInWortel (4) 008e - Wortels vereenvoudigen - basis - 0ms d \(\sqrt{11\frac{1}{2}}=\sqrt{\frac{23}{2}}={\sqrt{23} \over \sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={\sqrt{46} \over 2}=\frac{1}{2}\sqrt{46}\text{.}\) 1p opgave 2Herleid. 1p a \({36\sqrt{140} \over 4\sqrt{7}}\) Delen (4) 00dc - Wortels vereenvoudigen - basis - 10ms a \({36\sqrt{140} \over 4\sqrt{7}}={36 \over 4}⋅{\sqrt{140} \over \sqrt{7}}=9\sqrt{20}=9⋅\sqrt{4}⋅\sqrt{5}=9⋅2⋅\sqrt{5}=18\sqrt{5}\) 1p 1p b \(3\sqrt{14}⋅4\sqrt{7}\) Vermenigvuldigen (5) 00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms) b \(3\sqrt{14}⋅4\sqrt{7}=12\sqrt{98}=12⋅\sqrt{49}⋅\sqrt{2}=12⋅7⋅\sqrt{2}=84\sqrt{2}\) 1p |