Getal & Ruimte (13e editie) - 3 vwo

'Wortels vereenvoudigen'.

2 vwo 5.3 Wortels herleiden

Wortels vereenvoudigen (5)

opgave 1

Herleid.

2p

a

\(\sqrt{500}+\sqrt{20}\)

Optellen (5)
0085 - Wortels vereenvoudigen - basis - 0ms

a

\(\sqrt{500}+\sqrt{20}=\sqrt{100}⋅\sqrt{5}+\sqrt{4}⋅\sqrt{5}=10\sqrt{5}+2\sqrt{5}\text{.}\)

1p

\(10\sqrt{5}+2\sqrt{5}=12\sqrt{5}\text{.}\)

1p

1p

b

\(\sqrt{20}\)

FactorVoorWortelteken (1)
0086 - Wortels vereenvoudigen - basis - 0ms

b

\(\sqrt{20}=\sqrt{4}⋅\sqrt{5}=2\sqrt{5}\text{.}\)

1p

1p

c

\(-7\sqrt{175}\)

FactorVoorWortelteken (2)
0087 - Wortels vereenvoudigen - basis - 0ms

c

\(-7\sqrt{175}=-7⋅\sqrt{25}⋅\sqrt{7}=-7⋅5⋅\sqrt{7}=-35\sqrt{7}\text{.}\)

1p

2p

d

\(6\sqrt{8}-7\sqrt{200}\)

Optellen (6)
0088 - Wortels vereenvoudigen - basis - 0ms

d

\(6\sqrt{8}-7\sqrt{200}=6⋅\sqrt{4}⋅\sqrt{2}-7⋅\sqrt{100}⋅\sqrt{2}\text{.}\)

1p

\(6⋅2⋅\sqrt{2}-7⋅10⋅\sqrt{2}=12\sqrt{2}-70\sqrt{2}=-58\sqrt{2}\text{.}\)

1p

opgave 2

Herleid.

1p

\(\sqrt{\frac{1}{4}}\)

BreukInWortel (1)
008b - Wortels vereenvoudigen - basis - 0ms

\(\sqrt{\frac{1}{4}}={\sqrt{1} \over \sqrt{4}}=\frac{1}{2}\text{.}\)

1p

3 vwo 5.5 Wortels herleiden

Wortels vereenvoudigen (6)

opgave 1

Herleid.

1p

a

\({2 \over 7\sqrt{3}}\)

WortelInNoemer
0089 - Wortels vereenvoudigen - basis - 0ms

a

\({2 \over 7\sqrt{3}}={2 \over 7\sqrt{3}}⋅{\sqrt{3} \over \sqrt{3}}={2\sqrt{3} \over 7⋅3}=\frac{2}{21}\sqrt{3}\text{.}\)

1p

1p

b

\(\sqrt{3\frac{21}{25}}\)

BreukInWortel (2)
008c - Wortels vereenvoudigen - basis - 0ms

b

\(\sqrt{3\frac{21}{25}}=\sqrt{\frac{96}{25}}={\sqrt{96} \over \sqrt{25}}={\sqrt{96} \over 5}=\frac{1}{5}\sqrt{96}=\frac{1}{5}⋅4⋅\sqrt{6}=\frac{4}{5}\sqrt{6}\text{.}\)

1p

1p

c

\(\sqrt{\frac{25}{56}}\)

BreukInWortel (3)
008d - Wortels vereenvoudigen - basis - 1ms

c

\(\sqrt{\frac{25}{56}}={\sqrt{25} \over \sqrt{56}}={5 \over \sqrt{56}}⋅{\sqrt{56} \over \sqrt{56}}={5\sqrt{56} \over 56}=\frac{5}{56}\sqrt{56}=\frac{5}{56}⋅2⋅\sqrt{14}=\frac{5}{28}\sqrt{14}\text{.}\)

1p

1p

d

\(\sqrt{11\frac{1}{2}}\)

BreukInWortel (4)
008e - Wortels vereenvoudigen - basis - 0ms

d

\(\sqrt{11\frac{1}{2}}=\sqrt{\frac{23}{2}}={\sqrt{23} \over \sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={\sqrt{46} \over 2}=\frac{1}{2}\sqrt{46}\text{.}\)

1p

opgave 2

Herleid.

1p

a

\({36\sqrt{140} \over 4\sqrt{7}}\)

Delen (4)
00dc - Wortels vereenvoudigen - basis - 10ms

a

\({36\sqrt{140} \over 4\sqrt{7}}={36 \over 4}⋅{\sqrt{140} \over \sqrt{7}}=9\sqrt{20}=9⋅\sqrt{4}⋅\sqrt{5}=9⋅2⋅\sqrt{5}=18\sqrt{5}\)

1p

1p

b

\(3\sqrt{14}⋅4\sqrt{7}\)

Vermenigvuldigen (5)
00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms)

b

\(3\sqrt{14}⋅4\sqrt{7}=12\sqrt{98}=12⋅\sqrt{49}⋅\sqrt{2}=12⋅7⋅\sqrt{2}=84\sqrt{2}\)

1p

"