Getal & Ruimte (13e editie) - havo wiskunde A
'De vergelijking van een lijn'.
| 3 havo | 1.6 Vergelijkingen met twee variabelen | |||||
opgave 1Gegeven is de lijn \(l{:}\,21x+8y=28\text{.}\) 2p Bereken de coördinaten van de snijpunten met de \(x\text{-}\)as en de \(y\text{-}\)as. SnijpuntenMetAssen 00bi - De vergelijking van een lijn - basis - midden - 1ms ○ Voor het snijpunt met de \(x\text{-}\)as geldt \(y=0\text{,}\) 1p ○ Voor het snijpunt met de \(y\text{-}\)as geldt \(x=0\text{,}\) 1p opgave 2Gegeven is de lijn \(l{:}\,x+4y=3\text{.}\) 1p Onderzoek of het punt \(A(6, 0)\) op \(l\) ligt. LigtPuntOpLijn 00bj - De vergelijking van een lijn - basis - basis - 1ms ○ \(A(6, 0)\) invullen geeft \(1⋅6+4⋅0=6≠3\) 1p opgave 3Gegeven is de vergelijking \(l{:}\,4x-8y=-5\text{.}\) 1p Maak de variabele \(x\) vrij. VariabeleVrijmaken 00bm - De vergelijking van een lijn - basis - midden - 0ms ○ Herleiden geeft 1p opgave 4Gegeven is de lijn \(l{:}\,-9x+by=3\text{.}\) 2p Voor welke \(b\) gaat \(l\) door het punt \(A(2, -7)\text{?}\) CoefficientBijGegevenPunt (1) 00nj - De vergelijking van een lijn - basis - eind - 1ms ○ \(\begin{rcases}-9x+by=3 \\ \text{door }A(2, -7)\end{rcases}\begin{matrix}-9⋅2+b⋅-7=3\end{matrix}\) 1p ○ \(-18-7b=3\) 1p opgave 5Gegeven is de vergelijking \(l{:}\,-x+3y=5\text{.}\) 2p Bereken de richtingscoëfficiënt van de lijn \(l\text{.}\) RichtingscoefficientBerekenen 00nl - De vergelijking van een lijn - basis - midden - 1ms ○ Herleiden naar \(y=ax+b\) geeft 1p ○ Dus \(\text{rc}_l=\frac{1}{3}\text{.}\) 1p opgave 6Gegeven is de lijn \(l{:}\,-4x+9y=-18\text{.}\) 3p Teken de grafiek van \(l\text{.}\) Tekenen 00nm - De vergelijking van een lijn - basis - midden - 0ms ○
1p ○ 2p |