Getal & Ruimte (13e editie) - havo wiskunde A
'Lineaire formules'.
| 2 havo/vwo | 3.vk Grafiek bij formule | |||||
opgave 1Gegeven is de formule \(R=-4q-7\text{.}\) 1p Bereken de waarde van \(R\) die hoort bij \(q=-9\text{.}\) FormuleBerekenen 00mx - Lineaire formules - basis - basis - dynamic variables ○ Het invullen van \(q=-9\) geeft 1p opgave 2Gegeven is de formule \(K=3q-5\text{.}\) 3p Teken de bijbehorende grafiek. Tekenen (1) 00n0 - Lineaire formules - basis - midden - dynamic variables ○ Het is een lineaire formule, dus de grafiek is een lijn.
1p ○ 2p |
||||||
| 2 havo/vwo | 3.1 Grafieken van lineaire formules | |||||
opgave 1Gegeven is de formule \(B=6t-8\text{.}\) 1p Controleer of het punt \(A(-2, -21)\) op de grafiek van \(B=6t-8\) ligt. LigtPuntOpLijn 00mz - Lineaire formules - basis - eind - dynamic variables ○ Het invullen van \(t=-2\) geeft 1p opgave 2Gegeven is de formule \(y=\frac{3}{5}x-2\text{.}\) 3p Teken de bijbehorende grafiek. Tekenen (2) 00n1 - Lineaire formules - basis - eind - data pool: #122 (2ms) - dynamic variables ○ Het is een lineaire formule, dus de grafiek is een lijn.
1p ○ 2p |
||||||
| 2 havo/vwo | 3.2 De formule van een lijn opstellen | |||||
opgave 1Geef de richtingscoëfficiënt en het snijpunt met de \(y\text{-}\)as van de volgende lijnen. 2p a \(y=x-4\) Eigenschappen (1) 00n4 - Lineaire formules - gevorderd - midden a Omschrijven naar de standaardvorm \(y=ax+b\) geeft 1p ○ De richtingscoëfficiënt is \(1\) en het snijpunt met de \(y\text{-}\)as is \((0, -4)\text{.}\) 1p 2p b \(y=5x\) Eigenschappen (2) 00n5 - Lineaire formules - gevorderd - eind b Omschrijven naar de standaardvorm \(y=ax+b\) geeft 1p ○ De richtingscoëfficiënt is \(5\) en het snijpunt met de \(y\text{-}\)as is \((0, 0)\text{.}\) 1p 2p c \(y=-3\) Eigenschappen (3) 00n6 - Lineaire formules - gevorderd - eind c Omschrijven naar de standaardvorm \(y=ax+b\) geeft 1p ○ De richtingscoëfficiënt is \(0\) en het snijpunt met de \(y\text{-}\)as is \((0, -3)\text{.}\) 1p 2p d \(y=-5-4x\) Eigenschappen (4) 00n7 - Lineaire formules - gevorderd - eind d Omschrijven naar de standaardvorm \(y=ax+b\) geeft 1p ○ De richtingscoëfficiënt is \(-4\) en het snijpunt met de \(y\text{-}\)as is \((0, -5)\text{.}\) 1p |
||||||
| 2 havo/vwo | 3.4 Vergelijkingen oplossen | |||||
opgave 1Gegeven zijn de lijnen \(k{:}\,y=2x-12\) en \(l{:}\,y=4x-18\text{.}\) 3p Bereken de coördinaten van het snijpunt \(S\) van de lijnen \(k\) en \(l\text{.}\) SnijpuntTweeLijnen 00mw - Lineaire formules - basis - eind ○ Gelijkstellen geeft 1p ○ Invullen geeft 1p ○ Dus \(S(3, -6)\text{.}\) 1p |
||||||
| 3 havo | 1.4 Snijpunten van grafieken | |||||
opgave 1Gegeven is de formule \(y=2x+5\text{.}\) 3p Bereken exact de coördinaat van het snijpunt van de grafiek met de \(x\text{-}\)as. SnijpuntMetXas 00ju - Lineaire formules - basis - midden ○ Het snijpunt van de grafiek met de \(x\text{-}\)as volgt uit 1p ○ De balansmethode geeft 1p ○ Het snijpunt van de grafiek met de \(x\text{-}\)as is \((-2\frac{1}{2}, 0)\text{.}\) 1p opgave 2Gegeven is de formule \(y=5x+3\text{.}\) 2p Bereken exact de coördinaat van het snijpunt van de grafiek met de \(y\text{-}\)as. SnijpuntMetYas 00jv - Lineaire formules - basis - midden ○ Het snijpunt van de grafiek met de \(y\text{-}\)as volgt uit 1p ○ Het snijpunt van de grafiek met de \(y\text{-}\)as is \((0, 3)\text{.}\) 1p |