Getal & Ruimte (13e editie) - havo wiskunde A
'Snelheid'.
| havo wiskunde A | 1.1 Rekenen |
opgave 1Een roeiboot legt een afstand van \(48{,}7\text{ }\text{kilometer}\) af in \(2\text{ }\text{uur}\) en \(58\text{ }\text{minuten}\text{.}\) 2p Bereken de gemiddelde snelheid in km/uur en rond af op 2 decimalen. GemiddeldeSnelheid 00ij - Snelheid - basis ○ \(2\text{ }\text{uren}\) en \(58\text{ }\text{minuten}=2+{58 \over 60}=2{,}966...\text{ }\text{uur}\text{.}\) 1p ○ De gemiddelde snelheid is \({48{,}7\text{ }\text{km} \over 2{,}966...\text{ }\text{uur}}≈16{,}42\text{ }\text{km/uur}\text{.}\) 1p opgave 2Een fietser rijdt gedurende \(1\text{ }\text{uur}\) en \(53\text{ }\text{minuten}\) met een gemiddelde snelheid van \(20{,}2\text{ }\text{km/uur}\text{.}\) 2p Bereken de afstand die de fiets heeft afgelegd in kilometers en rond zonodig af op 2 decimalen. Afstand 00iq - Snelheid - basis ○ \(1\text{ }\text{uren}\) en \(53\text{ }\text{minuten}=1+{53 \over 60}=1{,}883...\text{ }\text{uur}\text{.}\) 1p ○ De afgelegde afstand \(20{,}2\text{ }\text{km/uur}⋅1{,}883...\text{ }\text{uur}≈38{,}04\text{ }\text{km}\text{.}\) 1p opgave 3Een auto legt een afstand van \(2\,960\text{ }\text{m}\) af met een gemiddelde snelheid van \(21{,}9\text{ }\text{m/s}\text{.}\) 2p Bereken hoe lang de auto hierover doet. Geef je antwoord in gehele minuten en seconden. Tijd 00ir - Snelheid - basis ○ Hierover doet de auto \({2\,960\text{ }\text{m} \over 21{,}9\text{ }\text{m/s}}=135{,}159...\text{ }\text{s}\text{.}\) 1p ○ \({135{,}159... \over 60}=2{,}252...\text{ }\text{minuten}\text{,}\) dus dat is \(2\text{ }\text{minuten}\) en \(0{,}252...⋅60=15\text{ }\text{seconden}\text{.}\) 1p |