Getal & Ruimte (13e editie) - havo wiskunde A
'Werken met groeifactoren'.
| havo wiskunde A | 1.2 Procenten |
opgave 1Een hoeveelheid neemt \(1{,}4\%\) toe en daarna met \(1{,}9\%\) af. 3p Bereken de totale procentuele verandering. ProcentOpProcent (1) 003p - Werken met groeifactoren - basis - 0ms ○ Bij de veranderingen horen de groeifactoren 1p ○ De totale groeifactor is dan 1p ○ De totale toename is 1p opgave 2Een hoeveelheid neemt eerst \(2\) jaren toe met steeds \(3{,}8\%\) per jaar en daarna \(4\) jaren af met steeds \(1{,}5\%\text{.}\) 3p Bereken de totale procentuele verandering. ProcentOpProcent (3) 003q - Werken met groeifactoren - basis - 0ms ○ Bij de veranderingen horen de groeifactoren 1p ○ De totale groeifactor is dan 1p ○ De totale toename is 1p opgave 3Een hoeveelheid neemt \(5\) weken af met steeds \(1{,}4\%\) per week. 3p Bereken de totale procentuele verandering. ProcentOpProcent (2) 00o7 - Werken met groeifactoren - basis - 3ms ○ Bij de verandering hoort de groeifactor 1p ○ De totale groeifactor is dan 1p ○ De totale toename is 1p |
|
| havo wiskunde A | 1.3 Exponentiële groei |
opgave 1Een hoeveelheid neemt in een jaar toe van \(294\) naar \(342\text{.}\) 1p a Bereken de groeifactor. Rond af op drie decimalen. Neem aan dat de procentuele toename ieder jaar hetzelfde is. Op 1 januari 2024 was de hoeveelheid \(235\text{.}\) 1p b Bereken de hoeveelheid op 1 januari 2025. 1p c Bereken de hoeveelheid op 1 januari 2023. Definitie 003o - Werken met groeifactoren - basis - 1ms a \(g={342 \over 294}≈1{,}163\text{.}\) 1p b Op 1 januari 2025 is de hoeveelheid \(235⋅1{,}163≈273\text{.}\) 1p c Op 1 januari 2023 is de hoeveelheid \({235 \over 1{,}163}≈202\text{.}\) 1p opgave 2Een hoeveelheid verdubbelt. 1p a Geef de groeifactor. 1p b Bereken de procentuele verandering. Definitie (2) 00o6 - Werken met groeifactoren - basis - 0ms a \(g=2\text{.}\) 1p b De procentuele toename is 1p |