Getal & Ruimte (13e editie) - havo wiskunde B

'Gelijkvormige driehoeken'.

havo wiskunde B 3.4 Vergelijkingen in de meetkunde

Gelijkvormige driehoeken (4)

opgave 1

Gegeven is driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}D=2\text{,}\) \(B\kern{-.8pt}D=1\) en \(B\kern{-.8pt}C=6\text{.}\)

ABCDE216

3p

Bereken \(D\kern{-.8pt}E\text{.}\)

Gelijkvormigheid (1)
00ou - Gelijkvormige driehoeken - basis - 2ms - data pool: #102 (2ms)

\(\triangle A\kern{-.8pt}D\kern{-.8pt}E∼\triangle A\kern{-.8pt}B\kern{-.8pt}C\)

1p

\({A\kern{-.8pt}D \over A\kern{-.8pt}B}={D\kern{-.8pt}E \over B\kern{-.8pt}C}={A\kern{-.8pt}E \over A\kern{-.8pt}C}\) geeft \({2 \over 3}={D\kern{-.8pt}E \over 6}={A\kern{-.8pt}E \over A\kern{-.8pt}C}\)

1p

\(D\kern{-.8pt}E={2⋅6 \over 3}=4\)

1p

opgave 2

Gegeven is rechthoek \(A\kern{-.8pt}B\kern{-.8pt}C\kern{-.8pt}D\) met \(A\kern{-.8pt}B=3\text{,}\) \(A\kern{-.8pt}D=10\) en \(C\kern{-.8pt}E=6\text{.}\)

ABCDEF3610

4p

Bereken \(B\kern{-.8pt}F\text{.}\)

Gelijkvormigheid (3)
00ov - Gelijkvormige driehoeken - basis - 1ms

\(B\kern{-.8pt}E=B\kern{-.8pt}C-C\kern{-.8pt}E=10-6=4\text{.}\)

1p

\(\triangle C\kern{-.8pt}D\kern{-.8pt}E∼\triangle B\kern{-.8pt}F\kern{-.8pt}E\)

1p

\({C\kern{-.8pt}D \over B\kern{-.8pt}F}={C\kern{-.8pt}E \over B\kern{-.8pt}E}={D\kern{-.8pt}E \over F\kern{-.8pt}E}\) geeft \({3 \over B\kern{-.8pt}F}={6 \over 4}={D\kern{-.8pt}E \over F\kern{-.8pt}E}\)

1p

\(B\kern{-.8pt}F={3⋅4 \over 6}=2\)

1p

opgave 3

Gegeven is rechthoek \(A\kern{-.8pt}B\kern{-.8pt}C\kern{-.8pt}D\) met \(A\kern{-.8pt}B=5\text{,}\) \(A\kern{-.8pt}D=2\) en \(B\kern{-.8pt}F=6\text{.}\)

ABCDEF526

4p

Bereken \(C\kern{-.8pt}E\text{.}\)

Gelijkvormigheid (4)
00ow - Gelijkvormige driehoeken - basis - 0ms

\(\triangle B\kern{-.8pt}F\kern{-.8pt}E∼\triangle A\kern{-.8pt}F\kern{-.8pt}D\)

1p

\({B\kern{-.8pt}F \over A\kern{-.8pt}F}={F\kern{-.8pt}E \over F\kern{-.8pt}D}={B\kern{-.8pt}E \over A\kern{-.8pt}D}\) geeft \({6 \over 11}={F\kern{-.8pt}E \over F\kern{-.8pt}D}={B\kern{-.8pt}E \over 2}\)

1p

\(B\kern{-.8pt}E={6⋅2 \over 11}=1\frac{1}{11}\)

1p

\(C\kern{-.8pt}E=B\kern{-.8pt}C-B\kern{-.8pt}E=2-1\frac{1}{11}=\frac{10}{11}\text{.}\)

1p

opgave 4

Gegeven is driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=12\text{,}\) \(B\kern{-.8pt}D=11\) en \(D\kern{-.8pt}E=4\text{.}\)

ABCDE11124

4p

Bereken \(A\kern{-.8pt}D\text{.}\)

GelijkvormigheidMetX (1)
00ox - Gelijkvormige driehoeken - basis - 3ms - data pool: #113 (3ms)

\(\triangle D\kern{-.8pt}A\kern{-.8pt}E∼\triangle B\kern{-.8pt}A\kern{-.8pt}C\)

1p

\({A\kern{-.8pt}D \over A\kern{-.8pt}B}={A\kern{-.8pt}E \over A\kern{-.8pt}C}={D\kern{-.8pt}E \over B\kern{-.8pt}C}\) geeft \({x \over x+11}={A\kern{-.8pt}E \over B\kern{-.8pt}C}={4 \over 12}\)

1p

\(12x=4(x+11)\)

1p

\(12x=4x+44\)
\(8x=44\)
\(x={44 \over 8}=5\frac{1}{2}\text{.}\)

1p

"