Getal & Ruimte (13e editie) - havo wiskunde B
'Stelling van Pythagoras'.
| 2 havo/vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=38\text{,}\) \(K\kern{-.8pt}L=36\) en \(\angle \text{K}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(L\kern{-.8pt}M\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis ○ Pythagoras in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}M^2+K\kern{-.8pt}L^2=L\kern{-.8pt}M^2\text{.}\) 1p ○ \(L\kern{-.8pt}M^2=38^2+36^2=2\,740\text{.}\) 1p ○ \(L\kern{-.8pt}M=\sqrt{2\,740}≈52{,}3\text{.}\) 1p |
|
| 2 havo/vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=45\text{,}\) \(K\kern{-.8pt}L=62\) en \(\angle \text{M}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(K\kern{-.8pt}M\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis ○ Pythagoras in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2+K\kern{-.8pt}M^2=K\kern{-.8pt}L^2\) ofwel \(45^2+K\kern{-.8pt}M^2=62^2\text{.}\) 1p ○ \(K\kern{-.8pt}M^2=62^2-45^2=1\,819\text{.}\) 1p ○ \(K\kern{-.8pt}M=\sqrt{1\,819}≈42{,}6\text{.}\) 1p |