Getal & Ruimte (13e editie) - vwo wiskunde A
'Stelsels oplossen'.
| vwo wiskunde A | k.1 Stelsels van lineaire vergelijkingen |
opgave 1Los exact op. 3p a \(\begin{cases}4x-4y=-2 \\ 2x-4y=-6\end{cases}\) Eliminatie (1) 003f - Stelsels oplossen - basis - 304ms - dynamic variables a Aftrekken geeft \(2x=4\text{,}\) dus \(x=2\text{.}\) 1p ○ \(\begin{rcases}4x-4y=-2 \\ x=2\end{rcases}\begin{matrix}4⋅2-4y=-2 \\ -4y=-10 \\ y=2\frac{1}{2}\end{matrix}\) 1p ○ De oplossing is \((x, y)=(2, 2\frac{1}{2})\text{.}\) 1p 4p b \(\begin{cases}6x+2y=1 \\ 4x+y=-1\end{cases}\) Eliminatie (2) 003g - Stelsels oplossen - basis - 8ms - dynamic variables b \(\begin{cases}6x+2y=1 \\ 4x+y=-1\end{cases}\) \(\begin{vmatrix}1 \\ 2\end{vmatrix}\) geeft \(\begin{cases}6x+2y=1 \\ 8x+2y=-2\end{cases}\) 1p ○ Aftrekken geeft \(-2x=3\text{,}\) dus \(x=-1\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}6x+2y=1 \\ x=-1\frac{1}{2}\end{rcases}\begin{matrix}6⋅-1\frac{1}{2}+2y=1 \\ 2y=10 \\ y=5\end{matrix}\) 1p ○ De oplossing is \((x, y)=(-1\frac{1}{2}, 5)\text{.}\) 1p 4p c \(\begin{cases}2a-4b=-3 \\ 3a+5b=1\end{cases}\) Eliminatie (3) 003h - Stelsels oplossen - basis - 8ms - dynamic variables c \(\begin{cases}2a-4b=-3 \\ 3a+5b=1\end{cases}\) \(\begin{vmatrix}5 \\ 4\end{vmatrix}\) geeft \(\begin{cases}10a-20b=-15 \\ 12a+20b=4\end{cases}\) 1p ○ Optellen geeft \(22a=-11\text{,}\) dus \(a=-\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}2a-4b=-3 \\ a=-\frac{1}{2}\end{rcases}\begin{matrix}2⋅-\frac{1}{2}-4b=-3 \\ -4b=-2 \\ b=\frac{1}{2}\end{matrix}\) 1p ○ De oplossing is \((a, b)=(-\frac{1}{2}, \frac{1}{2})\text{.}\) 1p |