Getal & Ruimte (13e editie) - vwo wiskunde B

'Lineaire formules'.

2 vwo 3.1 Lineaire formules

Lineaire formules (4)

opgave 1

Geef de richtingscoëfficiënt en het snijpunt met de \(y\text{-}\)as van de volgende lijnen.

2p

a

\(y=-3x-4\)

Eigenschappen (1)
00n4 - Lineaire formules - gevorderd - midden - 1ms

a

Omschrijven naar de standaardvorm \(y=ax+b\) geeft
\(y=-3⋅x-4\text{.}\)

1p

De richtingscoëfficiënt is \(-3\) en het snijpunt met de \(y\text{-}\)as is \((0, -4)\text{.}\)

1p

2p

b

\(y=-x\)

Eigenschappen (2)
00n5 - Lineaire formules - gevorderd - eind - 0ms

b

Omschrijven naar de standaardvorm \(y=ax+b\) geeft
\(y=-1⋅x+0\text{.}\)

1p

De richtingscoëfficiënt is \(-1\) en het snijpunt met de \(y\text{-}\)as is \((0, 0)\text{.}\)

1p

2p

c

\(y=-5\)

Eigenschappen (3)
00n6 - Lineaire formules - gevorderd - eind - 0ms

c

Omschrijven naar de standaardvorm \(y=ax+b\) geeft
\(y=0⋅x-5\text{.}\)

1p

De richtingscoëfficiënt is \(0\) en het snijpunt met de \(y\text{-}\)as is \((0, -5)\text{.}\)

1p

2p

d

\(y=-5+3x\)

Eigenschappen (4)
00n7 - Lineaire formules - gevorderd - eind - 0ms

d

Omschrijven naar de standaardvorm \(y=ax+b\) geeft
\(y=3⋅x-5\text{.}\)

1p

De richtingscoëfficiënt is \(3\) en het snijpunt met de \(y\text{-}\)as is \((0, -5)\text{.}\)

1p

3 vwo 1.2 Lineaire formules

Lineaire formules (3)

opgave 1

Gegeven is de formule \(y=9x+5\text{.}\)

1p

Bereken de waarde van \(y\) die hoort bij \(x=4\text{.}\)

FormuleBerekenen
00mx - Lineaire formules - basis - basis - 0ms - dynamic variables

Het invullen van \(x=4\) geeft
\(y=9⋅4+5=36+5=41\text{.}\)

1p

opgave 2

Gegeven is de formule \(B=-5t-2\text{.}\)

1p

Controleer of het punt \(A(8, -41)\) op de grafiek van \(B=-5t-2\) ligt.

LigtPuntOpLijn
00mz - Lineaire formules - basis - eind - 1ms - dynamic variables

Het invullen van \(t=8\) geeft
\(B=-5⋅8-2=-42≠-41\text{,}\) dus het punt \(A\) ligt niet op de grafiek.

1p

opgave 3

Gegeven is de formule \(W=-\frac{4}{5}q+3\text{.}\)

3p

Teken de bijbehorende grafiek.

Tekenen (2)
00n1 - Lineaire formules - basis - eind - 3ms - data pool: #122 (2ms) - dynamic variables

Het is een lineaire formule, dus de grafiek is een lijn.

x

\(0\)

\(5\)

y

\(3\)

\(-1\)

1p

0123456-2-10123qW

2p

3 vwo 1.4 Snijpunten van grafieken

Lineaire formules (3)

opgave 1

Gegeven is de formule \(y=2x+5\text{.}\)

3p

Bereken exact de coördinaat van het snijpunt van de grafiek met de \(x\text{-}\)as.

SnijpuntMetXas
00ju - Lineaire formules - basis - midden - 1ms

Het snijpunt van de grafiek met de \(x\text{-}\)as volgt uit
\(2x+5=0\)

1p

De balansmethode geeft
\(2x=-5\)
\(x=-2\frac{1}{2}\)

1p

Het snijpunt van de grafiek met de \(x\text{-}\)as is \((-2\frac{1}{2}, 0)\text{.}\)

1p

opgave 2

Gegeven is de formule \(y=3x+4\text{.}\)

2p

Bereken exact de coördinaat van het snijpunt van de grafiek met de \(y\text{-}\)as.

SnijpuntMetYas
00jv - Lineaire formules - basis - midden - 0ms

Het snijpunt van de grafiek met de \(y\text{-}\)as volgt uit
\(y=3⋅0+4=4\)

1p

Het snijpunt van de grafiek met de \(y\text{-}\)as is \((0, 4)\text{.}\)

1p

opgave 3

Gegeven zijn de lijnen \(k{:}\,y=4x+42\) en \(l{:}\,y=2x+24\text{.}\)

3p

Bereken de coördinaten van het snijpunt \(S\) van de lijnen \(k\) en \(l\text{.}\)

SnijpuntTweeLijnen
00mw - Lineaire formules - basis - eind - 0ms

Gelijkstellen geeft
\(4x+42=2x+24\)
\(2x=-18\)
\(x=-9\text{.}\)

1p

Invullen geeft
\(\begin{rcases}y=4x+42 \\ x=-9\end{rcases}\begin{matrix}y=4⋅-9+42 \\ y=6\end{matrix}\)

1p

Dus \(S(-9, 6)\text{.}\)

1p

vwo wiskunde B 1.1 Lineaire verbanden

Lineaire formules (2)

opgave 1

Gegeven is de formule \(y=4x+1\text{.}\)

3p

Bereken exact de coördinaat van het snijpunt van de grafiek met de lijn \(y=2\text{.}\)

SnijpuntMetHorizontaal
00n2 - Lineaire formules - basis - eind - 1ms

Het snijpunt volgt uit \(4x+1=2\text{.}\)

1p

De balansmethode geeft
\(4x=1\)
\(x=\frac{1}{4}\)

1p

De coördinaten van het snijpunt zijn \((\frac{1}{4}, 2)\text{.}\)

1p

opgave 2

Gegeven is de formule \(y=5x+4\text{.}\)

2p

Bereken exact de coördinaat van het snijpunt van de grafiek met de lijn \(x=3\text{.}\)

SnijpuntMetVerticaal
00n3 - Lineaire formules - basis - eind - 0ms

De \(y\text{-}\)coördinaat van het snijpunt is
\(y=5⋅3+4=19\text{.}\)

1p

De coördinaten van het snijpunt zijn \((3, 19)\text{.}\)

1p

"