Getal & Ruimte (13e editie) - vwo wiskunde B
'Sinus, cosinus en tangens'.
| 3 vwo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=27\text{,}\) \(\angle K=31\degree\) en \(\angle L=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis a Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle K)={L\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\tan(31\degree)={L\kern{-.8pt}M \over 27}\text{.}\) 1p ○ Hieruit volgt \(L\kern{-.8pt}M=27⋅\tan(31\degree)\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M≈16{,}2\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=38\text{,}\) \(\angle B=48\degree\) en \(\angle C=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis b Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle B)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\tan(48\degree)={38 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={38 \over \tan(48\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈34{,}2\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=48\text{,}\) \(K\kern{-.8pt}L=20\) en \(\angle K=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis c Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle M)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\tan(\angle M)={20 \over 48}\text{.}\) 1p ○ Hieruit volgt \(\angle M=\tan^{-1}({20 \over 48})\text{.}\) 1p ○ Dus \(\angle M≈22{,}6\degree\text{.}\) 1p |
|
| 3 vwo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=58\text{,}\) \(\angle M=51\degree\) en \(\angle K=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis a Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle M)={K\kern{-.8pt}L \over L\kern{-.8pt}M}\) ofwel \(\sin(51\degree)={K\kern{-.8pt}L \over 58}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L=58⋅\sin(51\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈45{,}1\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=23\text{,}\) \(\angle B=59\degree\) en \(\angle C=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis b Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle B)={A\kern{-.8pt}C \over A\kern{-.8pt}B}\) ofwel \(\sin(59\degree)={23 \over A\kern{-.8pt}B}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B={23 \over \sin(59\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈26{,}8\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=34\text{,}\) \(B\kern{-.8pt}C=61\) en \(\angle A=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis c Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle C)={A\kern{-.8pt}B \over B\kern{-.8pt}C}\) ofwel \(\sin(\angle C)={34 \over 61}\text{.}\) 1p ○ Hieruit volgt \(\angle C=\sin^{-1}({34 \over 61})\text{.}\) 1p ○ Dus \(\angle C≈33{,}9\degree\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=78\text{,}\) \(\angle L=41\degree\) en \(\angle M=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis d Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle L)={L\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\cos(41\degree)={L\kern{-.8pt}M \over 78}\text{.}\) 1p ○ Hieruit volgt \(L\kern{-.8pt}M=78⋅\cos(41\degree)\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M≈58{,}9\text{.}\) 1p opgave 23p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=20\text{,}\) \(\angle K=34\degree\) en \(\angle L=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis a Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle K)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\cos(34\degree)={20 \over K\kern{-.8pt}M}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M={20 \over \cos(34\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈24{,}1\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=34\text{,}\) \(K\kern{-.8pt}M=44\) en \(\angle L=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis b Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle K)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\cos(\angle K)={34 \over 44}\text{.}\) 1p ○ Hieruit volgt \(\angle K=\cos^{-1}({34 \over 44})\text{.}\) 1p ○ Dus \(\angle K≈39{,}4\degree\text{.}\) 1p |