Getal & Ruimte (13e editie) - vwo wiskunde B
'Sinus- en cosinusregel'.
| vwo wiskunde B | 3.4 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=16\text{,}\) \(\angle P=61\degree\) en \(\angle Q=60\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis - 0ms a De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R={Q\kern{-.8pt}R⋅\sin(\angle Q) \over \sin(\angle P)}={16⋅\sin(60\degree) \over \sin(61\degree)}\text{.}\) 1p ○ \(P\kern{-.8pt}R≈15{,}8\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=33\text{,}\) \(\angle L=37\degree\) en \(\angle M=113\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis - 0ms b De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L={K\kern{-.8pt}M⋅\sin(\angle M) \over \sin(\angle L)}={33⋅\sin(113\degree) \over \sin(37\degree)}\text{.}\) 1p ○ \(K\kern{-.8pt}L≈50{,}5\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=17\text{,}\) \(K\kern{-.8pt}L=24\) en \(\angle L=38\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis - 5ms c De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle M)={K\kern{-.8pt}L⋅\sin(\angle L) \over K\kern{-.8pt}M}={24⋅\sin(38\degree) \over 17}=0{,}869...\text{.}\) 1p ○ Dit geeft \(\angle M≈60{,}4\degree\) of \(\angle M≈119{,}6\degree\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=13\text{,}\) \(Q\kern{-.8pt}R=20\) en \(\angle R=25\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis - 0ms d De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle P)={Q\kern{-.8pt}R⋅\sin(\angle R) \over P\kern{-.8pt}Q}={20⋅\sin(25\degree) \over 13}=0{,}650...\text{.}\) 1p ○ Dit geeft \(\angle P≈40{,}6\degree\) of \(\angle P≈139{,}4\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=50\text{,}\) \(\angle P=59\degree\) en \(\angle R=34\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis - 0ms a Uit \(\angle P+\angle Q+\angle R=180\degree\) volgt \(\angle Q=180\degree-\angle P-\angle R=180\degree-59\degree-34\degree=87\degree\text{.}\) 1p ○ De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R={P\kern{-.8pt}R⋅\sin(\angle P) \over \sin(\angle Q)}={50⋅\sin(59\degree) \over \sin(87\degree)}\text{.}\) 1p ○ \(Q\kern{-.8pt}R≈42{,}9\text{.}\) 1p 4p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=62\text{,}\) \(\angle C=25\degree\) en \(\angle B=41\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis - 0ms b Uit \(\angle C+\angle A+\angle B=180\degree\) volgt \(\angle A=180\degree-\angle C-\angle B=180\degree-25\degree-41\degree=114\degree\text{.}\) 1p ○ De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B={B\kern{-.8pt}C⋅\sin(\angle C) \over \sin(\angle A)}={62⋅\sin(25\degree) \over \sin(114\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}B≈28{,}7\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=23\text{,}\) \(K\kern{-.8pt}L=24\) en \(\angle K=59\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis - 0ms c De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2=K\kern{-.8pt}M^2+K\kern{-.8pt}L^2-2⋅K\kern{-.8pt}M⋅K\kern{-.8pt}L⋅\cos(\angle K)\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M^2=23^2+24^2-2⋅23⋅24⋅\cos(59\degree)=536{,}397...\text{.}\) 1p ○ \(L\kern{-.8pt}M=\sqrt{536{,}397...}≈23{,}2\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=41\text{,}\) \(K\kern{-.8pt}M=24\) en \(\angle M=98\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis - 0ms d De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}L^2=L\kern{-.8pt}M^2+K\kern{-.8pt}M^2-2⋅L\kern{-.8pt}M⋅K\kern{-.8pt}M⋅\cos(\angle M)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L^2=41^2+24^2-2⋅41⋅24⋅\cos(98\degree)=2530{,}892...\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{2530{,}892...}≈50{,}3\text{.}\) 1p opgave 34p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=23\text{,}\) \(P\kern{-.8pt}R=22\) en \(P\kern{-.8pt}Q=25\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis - 5ms a De cosinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}Q^2=Q\kern{-.8pt}R^2+P\kern{-.8pt}R^2-2⋅Q\kern{-.8pt}R⋅P\kern{-.8pt}R⋅\cos(\angle R)\text{.}\) 1p ○ Invullen geeft \(25^2=23^2+22^2-2⋅23⋅22⋅\cos(\angle R)\) 1p ○ Balansmethode geeft \(\cos(\angle R)={625-1\,013 \over -1\,012}=0{,}383...\) 1p ○ Hieruit volgt \(\angle R=\cos^{-1}(0{,}383...)≈67{,}5\degree\text{.}\) 1p 4p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=12\text{,}\) \(B\kern{-.8pt}C=15\) en \(A\kern{-.8pt}C=21\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis - 0ms b De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}C^2=A\kern{-.8pt}B^2+B\kern{-.8pt}C^2-2⋅A\kern{-.8pt}B⋅B\kern{-.8pt}C⋅\cos(\angle B)\text{.}\) 1p ○ Invullen geeft \(21^2=12^2+15^2-2⋅12⋅15⋅\cos(\angle B)\) 1p ○ Balansmethode geeft \(\cos(\angle B)={441-369 \over -360}=-0{,}2\) 1p ○ Hieruit volgt \(\angle B=\cos^{-1}(-0{,}2)≈101{,}5\degree\text{.}\) 1p |