Getal & Ruimte (13e editie) - vwo wiskunde B
'Sinus- en cosinusregel'.
| vwo wiskunde B | 3.4 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=19\text{,}\) \(\angle A=52\degree\) en \(\angle B=70\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis a De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C={B\kern{-.8pt}C⋅\sin(\angle B) \over \sin(\angle A)}={19⋅\sin(70\degree) \over \sin(52\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}C≈22{,}7\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=17\text{,}\) \(\angle M=25\degree\) en \(\angle K=100\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis b De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M={K\kern{-.8pt}L⋅\sin(\angle K) \over \sin(\angle M)}={17⋅\sin(100\degree) \over \sin(25\degree)}\text{.}\) 1p ○ \(L\kern{-.8pt}M≈39{,}6\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=13\text{,}\) \(P\kern{-.8pt}R=20\) en \(\angle P=27\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis c De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle Q)={P\kern{-.8pt}R⋅\sin(\angle P) \over Q\kern{-.8pt}R}={20⋅\sin(27\degree) \over 13}=0{,}698...\text{.}\) 1p ○ Dit geeft \(\angle Q≈44{,}3\degree\) of \(\angle Q≈135{,}7\degree\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=16\text{,}\) \(P\kern{-.8pt}Q=26\) en \(\angle Q=34\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis d De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle R)={P\kern{-.8pt}Q⋅\sin(\angle Q) \over P\kern{-.8pt}R}={26⋅\sin(34\degree) \over 16}=0{,}908...\text{.}\) 1p ○ Dit geeft \(\angle R≈65{,}3\degree\) of \(\angle R≈114{,}7\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=14\text{,}\) \(\angle L=46\degree\) en \(\angle K=56\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis a Uit \(\angle L+\angle M+\angle K=180\degree\) volgt \(\angle M=180\degree-\angle L-\angle K=180\degree-46\degree-56\degree=78\degree\text{.}\) 1p ○ De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M={K\kern{-.8pt}L⋅\sin(\angle L) \over \sin(\angle M)}={14⋅\sin(46\degree) \over \sin(78\degree)}\text{.}\) 1p ○ \(K\kern{-.8pt}M≈10{,}3\text{.}\) 1p 4p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=27\text{,}\) \(\angle M=49\degree\) en \(\angle L=40\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis b Uit \(\angle M+\angle K+\angle L=180\degree\) volgt \(\angle K=180\degree-\angle M-\angle L=180\degree-49\degree-40\degree=91\degree\text{.}\) 1p ○ De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({K\kern{-.8pt}L \over \sin(\angle M)}={L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L={L\kern{-.8pt}M⋅\sin(\angle M) \over \sin(\angle K)}={27⋅\sin(49\degree) \over \sin(91\degree)}\text{.}\) 1p ○ \(K\kern{-.8pt}L≈20{,}4\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=11\text{,}\) \(K\kern{-.8pt}M=11\) en \(\angle M=60\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis c De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}L^2=L\kern{-.8pt}M^2+K\kern{-.8pt}M^2-2⋅L\kern{-.8pt}M⋅K\kern{-.8pt}M⋅\cos(\angle M)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L^2=11^2+11^2-2⋅11⋅11⋅\cos(60\degree)=120\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{120}=11{,}0\text{.}\) 1p 3p d Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=28\text{,}\) \(A\kern{-.8pt}C=37\) en \(\angle C=93\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis d De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}B^2=B\kern{-.8pt}C^2+A\kern{-.8pt}C^2-2⋅B\kern{-.8pt}C⋅A\kern{-.8pt}C⋅\cos(\angle C)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B^2=28^2+37^2-2⋅28⋅37⋅\cos(93\degree)=2261{,}440...\text{.}\) 1p ○ \(A\kern{-.8pt}B=\sqrt{2261{,}440...}≈47{,}6\text{.}\) 1p opgave 34p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=17\text{,}\) \(A\kern{-.8pt}B=15\) en \(B\kern{-.8pt}C=18\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis a De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2=A\kern{-.8pt}C^2+A\kern{-.8pt}B^2-2⋅A\kern{-.8pt}C⋅A\kern{-.8pt}B⋅\cos(\angle A)\text{.}\) 1p ○ Invullen geeft \(18^2=17^2+15^2-2⋅17⋅15⋅\cos(\angle A)\) 1p ○ Balansmethode geeft \(\cos(\angle A)={324-514 \over -510}=0{,}372...\) 1p ○ Hieruit volgt \(\angle A=\cos^{-1}(0{,}372...)≈68{,}1\degree\text{.}\) 1p 4p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=23\text{,}\) \(K\kern{-.8pt}L=29\) en \(L\kern{-.8pt}M=38\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis b De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2=K\kern{-.8pt}M^2+K\kern{-.8pt}L^2-2⋅K\kern{-.8pt}M⋅K\kern{-.8pt}L⋅\cos(\angle K)\text{.}\) 1p ○ Invullen geeft \(38^2=23^2+29^2-2⋅23⋅29⋅\cos(\angle K)\) 1p ○ Balansmethode geeft \(\cos(\angle K)={1\,444-1\,370 \over -1\,334}=-0{,}055...\) 1p ○ Hieruit volgt \(\angle K=\cos^{-1}(-0{,}055...)≈93{,}2\degree\text{.}\) 1p |