Getal & Ruimte (13e editie) - vwo wiskunde B
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{12}+\sqrt{48}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{12}+\sqrt{48}=\sqrt{4}⋅\sqrt{3}+\sqrt{16}⋅\sqrt{3}=2\sqrt{3}+4\sqrt{3}\text{.}\) 1p ○ \(2\sqrt{3}+4\sqrt{3}=6\sqrt{3}\text{.}\) 1p 1p b \(\sqrt{200}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{200}=\sqrt{100}⋅\sqrt{2}=10\sqrt{2}\text{.}\) 1p 1p c \(-4\sqrt{27}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(-4\sqrt{27}=-4⋅\sqrt{9}⋅\sqrt{3}=-4⋅3⋅\sqrt{3}=-12\sqrt{3}\text{.}\) 1p 2p d \(6\sqrt{125}+2\sqrt{45}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(6\sqrt{125}+2\sqrt{45}=6⋅\sqrt{25}⋅\sqrt{5}+2⋅\sqrt{9}⋅\sqrt{5}\text{.}\) 1p ○ \(6⋅5⋅\sqrt{5}+2⋅3⋅\sqrt{5}=30\sqrt{5}+6\sqrt{5}=36\sqrt{5}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{1\frac{24}{25}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 56ms ○ \(\sqrt{1\frac{24}{25}}=\sqrt{\frac{49}{25}}={\sqrt{49} \over \sqrt{25}}=\frac{7}{5}=1\frac{2}{5}\text{.}\) 1p |
|
| 3 vwo | 5.5 Wortels herleiden |
opgave 1Herleid. 1p a \({5 \over 3\sqrt{7}}\) WortelInNoemer 0089 - Wortels vereenvoudigen - basis - 1ms a \({5 \over 3\sqrt{7}}={5 \over 3\sqrt{7}}⋅{\sqrt{7} \over \sqrt{7}}={5\sqrt{7} \over 3⋅7}=\frac{5}{21}\sqrt{7}\text{.}\) 1p 1p b \(\sqrt{1\frac{43}{49}}\) BreukInWortel (2) 008c - Wortels vereenvoudigen - basis - 1ms b \(\sqrt{1\frac{43}{49}}=\sqrt{\frac{92}{49}}={\sqrt{92} \over \sqrt{49}}={\sqrt{92} \over 7}=\frac{1}{7}\sqrt{92}=\frac{1}{7}⋅2⋅\sqrt{23}=\frac{2}{7}\sqrt{23}\text{.}\) 1p 1p c \(\sqrt{\frac{25}{56}}\) BreukInWortel (3) 008d - Wortels vereenvoudigen - basis - 1ms c \(\sqrt{\frac{25}{56}}={\sqrt{25} \over \sqrt{56}}={5 \over \sqrt{56}}⋅{\sqrt{56} \over \sqrt{56}}={5\sqrt{56} \over 56}=\frac{5}{56}\sqrt{56}=\frac{5}{56}⋅2⋅\sqrt{14}=\frac{5}{28}\sqrt{14}\text{.}\) 1p 1p d \(\sqrt{\frac{2}{15}}\) BreukInWortel (4) 008e - Wortels vereenvoudigen - basis - 1ms d \(\sqrt{\frac{2}{15}}={\sqrt{2} \over \sqrt{15}}⋅{\sqrt{15} \over \sqrt{15}}={\sqrt{30} \over 15}=\frac{1}{15}\sqrt{30}\text{.}\) 1p opgave 2Herleid. 1p a \({8\sqrt{84} \over 4\sqrt{3}}\) Delen (4) 00dc - Wortels vereenvoudigen - basis - 9ms a \({8\sqrt{84} \over 4\sqrt{3}}={8 \over 4}⋅{\sqrt{84} \over \sqrt{3}}=2\sqrt{28}=2⋅\sqrt{4}⋅\sqrt{7}=2⋅2⋅\sqrt{7}=4\sqrt{7}\) 1p 1p b \(2\sqrt{14}⋅5\sqrt{7}\) Vermenigvuldigen (5) 00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms) b \(2\sqrt{14}⋅5\sqrt{7}=10\sqrt{98}=10⋅\sqrt{49}⋅\sqrt{2}=10⋅7⋅\sqrt{2}=70\sqrt{2}\) 1p |
|
| vwo wiskunde B | 3.3 Vergelijkingen in de meetkunde |
opgave 1Herleid. 1p a \({2 \over 4+\sqrt{5}}\) SomInNoemer (1) 00r3 - Wortels vereenvoudigen - basis - 1ms a \({2 \over 4+\sqrt{5}}={2 \over 4+\sqrt{5}}⋅{4-\sqrt{5} \over 4-\sqrt{5}}\) 1p 1p b \({\sqrt{5} \over \sqrt{2}+\sqrt{3}}\) SomInNoemer (2) 00r4 - Wortels vereenvoudigen - basis - 1ms b \({\sqrt{5} \over \sqrt{2}+\sqrt{3}}={\sqrt{5} \over \sqrt{2}+\sqrt{3}}⋅{\sqrt{2}-\sqrt{3} \over \sqrt{2}-\sqrt{3}}\) 1p |