Bijzondere rechthoekige driehoeken
16 - 6 oefeningen
|
Bijzondere306090DriehoekAB
007z - Bijzondere rechthoekige driehoeken - basis - 1ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=28\text{,}\) \(\angle B=30\degree\) en \(\angle C=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geldt \({A\kern{-.8pt}C \over 1}={B\kern{-.8pt}C \over \sqrt{3}}={A\kern{-.8pt}B \over 2}\text{.}\) 1p ○ Dit geeft \(B\kern{-.8pt}C={A\kern{-.8pt}B⋅\sqrt{3} \over 2}={28⋅\sqrt{3} \over 2}\text{.}\) 1p ○ \(B\kern{-.8pt}C=14\sqrt{3}\text{.}\) 1p |
|
Bijzondere306090DriehoekAC
0082 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=16\text{,}\) \(\angle K=30\degree\) en \(\angle L=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geldt \({L\kern{-.8pt}M \over 1}={K\kern{-.8pt}L \over \sqrt{3}}={K\kern{-.8pt}M \over 2}\text{.}\) 1p ○ Dit geeft \(K\kern{-.8pt}M={K\kern{-.8pt}L⋅2 \over \sqrt{3}}={16⋅2 \over \sqrt{3}}\text{.}\) 1p ○ \(K\kern{-.8pt}M={32 \over \sqrt{3}}=10\frac{2}{3}\sqrt{3}\text{.}\) 1p |
|
Bijzondere454590DriehoekAB
0081 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=17\text{,}\) \(\angle L=45\degree\) en \(\angle M=90\degree\text{.}\) |
○ In de bijzondere 45-45-90 driehoek \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geldt \({L\kern{-.8pt}M \over 1}={K\kern{-.8pt}M \over 1}={K\kern{-.8pt}L \over \sqrt{2}}\text{.}\) 1p ○ Dit geeft \(L\kern{-.8pt}M={K\kern{-.8pt}L⋅1 \over \sqrt{2}}={17⋅1 \over \sqrt{2}}\text{.}\) 1p ○ \(L\kern{-.8pt}M={17 \over \sqrt{2}}=8\frac{1}{2}\sqrt{2}\text{.}\) 1p |
|
Bijzondere454590DriehoekAC
0084 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=15\text{,}\) \(\angle M=45\degree\) en \(\angle K=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geldt \({K\kern{-.8pt}M \over 1}={K\kern{-.8pt}L \over 1}={L\kern{-.8pt}M \over \sqrt{2}}\text{.}\) 1p ○ Dit geeft \(L\kern{-.8pt}M={K\kern{-.8pt}M⋅\sqrt{2} \over 1}={15⋅\sqrt{2} \over 1}\text{.}\) 1p ○ \(L\kern{-.8pt}M=15\sqrt{2}\text{.}\) 1p |
|
Bijzondere603090DriehoekAB
0080 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=26\text{,}\) \(\angle B=60\degree\) en \(\angle C=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geldt \({B\kern{-.8pt}C \over 1}={A\kern{-.8pt}C \over \sqrt{3}}={A\kern{-.8pt}B \over 2}\text{.}\) 1p ○ Dit geeft \(B\kern{-.8pt}C={A\kern{-.8pt}B⋅1 \over 2}={26⋅1 \over 2}\text{.}\) 1p ○ \(B\kern{-.8pt}C=13\text{.}\) 1p |
|
Bijzondere603090DriehoekAC
0083 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=22\text{,}\) \(\angle A=60\degree\) en \(\angle B=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geldt \({A\kern{-.8pt}B \over 1}={B\kern{-.8pt}C \over \sqrt{3}}={A\kern{-.8pt}C \over 2}\text{.}\) 1p ○ Dit geeft \(A\kern{-.8pt}C={A\kern{-.8pt}B⋅2 \over 1}={22⋅2 \over 1}\text{.}\) 1p ○ \(A\kern{-.8pt}C=44\text{.}\) 1p |