Bijzondere rechthoekige driehoeken
16 - 6 oefeningen
|
Bijzondere306090DriehoekAB
007z - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=25\text{,}\) \(\angle M=30\degree\) en \(\angle K=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geldt \({K\kern{-.8pt}L \over 1}={K\kern{-.8pt}M \over \sqrt{3}}={L\kern{-.8pt}M \over 2}\text{.}\) 1p ○ Dit geeft \(K\kern{-.8pt}M={L\kern{-.8pt}M⋅\sqrt{3} \over 2}={25⋅\sqrt{3} \over 2}\text{.}\) 1p ○ \(K\kern{-.8pt}M=12\frac{1}{2}\sqrt{3}\text{.}\) 1p |
|
Bijzondere306090DriehoekAC
0082 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=12\text{,}\) \(\angle Q=30\degree\) en \(\angle R=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geldt \({P\kern{-.8pt}R \over 1}={Q\kern{-.8pt}R \over \sqrt{3}}={P\kern{-.8pt}Q \over 2}\text{.}\) 1p ○ Dit geeft \(P\kern{-.8pt}Q={Q\kern{-.8pt}R⋅2 \over \sqrt{3}}={12⋅2 \over \sqrt{3}}\text{.}\) 1p ○ \(P\kern{-.8pt}Q={24 \over \sqrt{3}}=8\sqrt{3}\text{.}\) 1p |
|
Bijzondere454590DriehoekAB
0081 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=17\text{,}\) \(\angle L=45\degree\) en \(\angle M=90\degree\text{.}\) |
○ In de bijzondere 45-45-90 driehoek \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geldt \({L\kern{-.8pt}M \over 1}={K\kern{-.8pt}M \over 1}={K\kern{-.8pt}L \over \sqrt{2}}\text{.}\) 1p ○ Dit geeft \(L\kern{-.8pt}M={K\kern{-.8pt}L⋅1 \over \sqrt{2}}={17⋅1 \over \sqrt{2}}\text{.}\) 1p ○ \(L\kern{-.8pt}M={17 \over \sqrt{2}}=8\frac{1}{2}\sqrt{2}\text{.}\) 1p |
|
Bijzondere454590DriehoekAC
0084 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=16\text{,}\) \(\angle L=45\degree\) en \(\angle M=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geldt \({L\kern{-.8pt}M \over 1}={K\kern{-.8pt}M \over 1}={K\kern{-.8pt}L \over \sqrt{2}}\text{.}\) 1p ○ Dit geeft \(K\kern{-.8pt}L={L\kern{-.8pt}M⋅\sqrt{2} \over 1}={16⋅\sqrt{2} \over 1}\text{.}\) 1p ○ \(K\kern{-.8pt}L=16\sqrt{2}\text{.}\) 1p |
|
Bijzondere603090DriehoekAB
0080 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=28\text{,}\) \(\angle A=60\degree\) en \(\angle B=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geldt \({A\kern{-.8pt}B \over 1}={B\kern{-.8pt}C \over \sqrt{3}}={A\kern{-.8pt}C \over 2}\text{.}\) 1p ○ Dit geeft \(A\kern{-.8pt}B={A\kern{-.8pt}C⋅1 \over 2}={28⋅1 \over 2}\text{.}\) 1p ○ \(A\kern{-.8pt}B=14\text{.}\) 1p |
|
Bijzondere603090DriehoekAC
0083 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=16\text{,}\) \(\angle B=60\degree\) en \(\angle C=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geldt \({B\kern{-.8pt}C \over 1}={A\kern{-.8pt}C \over \sqrt{3}}={A\kern{-.8pt}B \over 2}\text{.}\) 1p ○ Dit geeft \(A\kern{-.8pt}B={B\kern{-.8pt}C⋅2 \over 1}={16⋅2 \over 1}\text{.}\) 1p ○ \(A\kern{-.8pt}B=32\text{.}\) 1p |