Formules in de gevraagde vorm schrijven

20 - 12 oefeningen

DubbelLogaritmisch (1)
00ks - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.4

3p

a

Schrijf de formule \(y=270x^{1{,}11}\) in de vorm \(\log(y)=a+b⋅\log(x)\text{.}\)
Geef \(a\) in twee decimalen.

a

\(y=270x^{1{,}11}\)
\(\log(y)=\log(270x^{1{,}11})\)

1p

\(\log(y)=\log(270)+\log(x^{1{,}11})\)
\(\log(y)=\log(270)+1{,}11⋅\log(x)\)

1p

\(\log(y)=2{,}431...+1{,}11⋅\log(x)\)
Dus \(y=2{,}43+1{,}11⋅\log(x)\text{.}\)

1p

DubbelLogaritmisch (2)
00kt - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.4

3p

a

Schrijf de formule \(y={570 \over x^3\sqrt{x}}\) in de vorm \(\log(y)=a+b⋅\log(x)\text{.}\)
Geef \(a\) in twee decimalen.

a

\(y={570 \over x^3\sqrt{x}}=570x^{-3{,}5}\)
\(\log(y)=\log(570x^{-3{,}5})\)

1p

\(\log(y)=\log(570)+\log(x^{-3{,}5})\)
\(\log(y)=\log(570)-3{,}5⋅\log(x)\)

1p

\(\log(y)=2{,}755...-3{,}5⋅\log(x)\)
Dus \(y=2{,}76-3{,}5⋅\log(x)\text{.}\)

1p

DubbelLogaritmisch (3)
00kr - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.4

3p

a

Schrijf de formule \(\log(y)=1{,}34-1{,}82⋅\log(x)\) in de vorm \(y=ax^b\text{.}\)
Geef \(a\) in gehelen.

a

\(\log(y)=1{,}34-1{,}82⋅\log(x)\)
\(\log(y)=\log(10^{1{,}34})+\log(x^{-1{,}82})\)
\(\log(y)=\log(10^{1{,}34}⋅x^{-1{,}82})\)

1p

\(y=10^{1{,}34}⋅x^{-1{,}82}\)

1p

\(y=21{,}877...⋅x^{-1{,}82}\)
Dus \(y=22⋅x^{-1{,}82}\text{.}\)

1p

Exponentieel (1)
00k8 - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde A - 9.1

2p

a

Schrijf de formule \(y={532 \over 18{,}5⋅1{,}39^x}\) in de vorm \(y=b⋅g^x\text{.}\)
Rond \(b\) af op één decimaal en \(g\) op 3 decimalen.

a

\(y={532 \over 18{,}5⋅1{,}39^x}={532 \over 18{,}5}⋅{1 \over 1{,}39^x}={532 \over 18{,}5}⋅1{,}39^{-x}={532 \over 18{,}5}⋅(1{,}39^{-1})^x\)

1p

\(y={532 \over 18{,}5}⋅(1{,}39^{-1})^x=28{,}756...⋅0{,}7194...^x≈28{,}8⋅0{,}719^x\)

1p

Exponentieel (2)
00k9 - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde A - 9.1

2p

a

Schrijf de formule \(y={782⋅1{,}38^x \over 49⋅0{,}79^x}\) in de vorm \(y=b⋅g^x\text{.}\)
Rond \(b\) af op één decimaal en \(g\) op 3 decimalen.

a

\(y={782⋅1{,}38^x \over 49⋅0{,}79^x}={782 \over 49}⋅{1{,}38^x \over 0{,}79^x}={782 \over 49}⋅({1{,}38 \over 0{,}79})^x\)

1p

\(y={782 \over 49}⋅({1{,}38 \over 0{,}79})^x=15{,}959...⋅1{,}7468...^x≈16{,}0⋅1{,}747^x\)

1p

Logaritmisch (1)
00ko - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.4

3p

a

Schrijf de formule \(y=4\,300⋅0{,}79^x\) in de vorm \(\log(y)=ax+b\text{.}\)
Geef \(a\) in vier decimalen en \(b\) in twee decimalen.

a

\(y=4\,300⋅0{,}79^x\)
\(\log(y)=\log(4\,300⋅0{,}79^x)\)
\(\log(y)=\log(4\,300)+\log(0{,}79^x)\)

1p

\(\log(y)=\log(4\,300)+x⋅\log(0{,}79)\)

1p

\(\log(y)=3{,}633...+x⋅-0{,}10237...\)
Dus \(\log(y)=-0{,}1024x+3{,}63\)

1p

Logaritmisch (2)
00kp - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.4

3p

a

Schrijf de formule \(y=3\,800⋅0{,}92^{5x+1}\) in de vorm \(\log(y)=ax+b\text{.}\)
Geef \(a\) in vier decimalen en \(b\) in twee decimalen.

a

\(y=3\,800⋅0{,}92^{5x+1}\)
\(\log(y)=\log(3\,800⋅0{,}92^{5x+1})\)
\(\log(y)=\log(3\,800)+\log(0{,}92^{5x+1})\)

1p

\(\log(y)=\log(3\,800)+(5x+1)⋅\log(0{,}92)\)
\(\log(y)=\log(3\,800)+5x⋅\log(0{,}92)+1⋅\log(0{,}92)\)

1p

\(\log(y)=3{,}579...+5x⋅-0{,}03621...+1⋅-0{,}03621...\)
\(\log(y)=3{,}579...-0{,}18106...⋅x-0{,}03621...\)
Dus \(\log(y)=-0{,}1811x+3{,}54\)

1p

Logaritmisch (3)
00kq - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.4

3p

a

Schrijf de formule \(\log(y)=0{,}7508x+1{,}84\) in de vorm \(y=b⋅g^x\text{.}\)
Geef \(b\) in gehelen en \(g\) in twee decimalen.

a

\(\log(y)=0{,}7508x+1{,}84\)
\(y=10^{0{,}7508x+1{,}84}\)

1p

\(y=10^{0{,}7508x}⋅10^{1{,}84}\)
\(y=(10^{0{,}7508})^x⋅10^{1{,}84}\)

1p

\(y=5{,}633...^x⋅69{,}183...\)
Dus \(y=69⋅5{,}63^x\text{.}\)

1p

Logaritmisch (4)
00l0 - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

3p

a

Schrijf de formule \(y=1{,}13⋅{}^{5}\!\log(x)-1{,}51\) in de vorm \(y={}^{5}\!\log(ax^b)\text{.}\)
Geef \(a\) en \(b\) in twee decimalen.

a

\(y=1{,}13⋅{}^{5}\!\log(x)-1{,}51\)
\(\text{ }={}^{5}\!\log(x^{1{,}13})-1{,}51\)

1p

\(\text{ }={}^{5}\!\log(x^{1{,}13})+{}^{5}\!\log(5^{-1{,}51})\)
\(\text{ }={}^{5}\!\log(x^{1{,}13}⋅5^{-1{,}51})\)

1p

\(\text{ }={}^{5}\!\log(x^{1{,}13}⋅0{,}088...)\)
Dus \(y={}^{5}\!\log(0{,}09⋅x^{1{,}13})\text{.}\)

1p

Logaritmisch (5)
00l1 - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

3p

a

Schrijf de formule \(y={}^{2}\!\log({46 \over x^4})\) in de vorm \(y=a+b⋅{}^{2}\!\log(x)\text{.}\)
Geef \(a\) in twee decimalen.

a

\(y={}^{2}\!\log({46 \over x^4})\)
\(\text{ }={}^{2}\!\log(46x^{-4})\)

1p

\(\text{ }={}^{2}\!\log(46)+{}^{2}\!\log(x^{-4})\)
\(\text{ }={}^{2}\!\log(46)-4⋅{}^{2}\!\log(x)\)

1p

\(\text{ }=5{,}523...-4⋅{}^{2}\!\log(x)\)
Dus \(y=5{,}52-4⋅{}^{2}\!\log(x)\text{.}\)

1p

Logaritmisch (6)
00l2 - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

3p

a

Schrijf de formule \(y={}^{3}\!\log(1{,}7x)-0{,}5\) in de vorm \(y=a+b⋅{}^{2}\!\log(x)\text{.}\)
Geef \(a\) en \(b\) in twee decimalen.

a

\(y={}^{3}\!\log(1{,}7x)-0{,}5\)
\(\text{ }={}^{3}\!\log(1{,}7)+{}^{3}\!\log(x)-0{,}5\)

1p

\(\text{ }={}^{3}\!\log(1{,}7)-0{,}5+{{}^{2}\!\log(x) \over {}^{2}\!\log(3)}\)
\(\text{ }={}^{3}\!\log(1{,}7)-0{,}5+{1 \over {}^{2}\!\log(3)}⋅{}^{2}\!\log(x)\)

1p

\(\text{ }=0{,}482...-0{,}5+{1 \over 1{,}584...}⋅{}^{2}\!\log(x)\)
\(\text{ }=-0{,}017...+0{,}630...⋅{}^{2}\!\log(x)\)
Dus \(y=-0{,}02+0{,}63⋅{}^{2}\!\log(x)\text{.}\)

1p

Logaritmisch (7)
00l3 - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

3p

a

Schrijf de formule \(y=8⋅{}^{4}\!\log(48x)+5\) in de vorm \(y=a+b⋅{}^{4}\!\log(3x)\text{.}\)

a

\(y=8⋅{}^{4}\!\log(48x)+5\)
\(\text{ }=8⋅({}^{4}\!\log(16)+{}^{4}\!\log(3x))+5\)

1p

\(\text{ }=8⋅(2+{}^{4}\!\log(3x))+5\)

1p

\(\text{ }=16+8⋅{}^{4}\!\log(3x)+5\)
\(\text{ }=21+8⋅{}^{4}\!\log(3x)\)

1p

00ks 00kt 00kr 00k8 00k9 00ko 00kp 00kq 00l0 00l1 00l2 00l3