Kwadratische functies
1x - 10 oefeningen
|
BergOfDal
00nr - Kwadratische functies - basis
|
Getal & Ruimte (13e editie) - 3 havo - 3.1 Getal & Ruimte (13e editie) - 3 vwo - 3.2 |
|
Gegeven is de functie \(f(x)=-5x^2+2x-1\text{.}\) 1p Is de grafiek van \(f\) een berg- of dalparabool? Licht toe. |
○ \(a=-5\text{,}\) dus \(a<0\text{,}\) dus de grafiek van \(f\) is een bergparabool. 1p |
|
Functiewaarde (1)
00no - Kwadratische functies - basis
|
Getal & Ruimte (13e editie) - 3 havo - 3.1 Getal & Ruimte (13e editie) - 3 vwo - 3.2 |
|
Gegeven is de functie \(f(x)=-x^2+4x-2\text{.}\) 1p Bereken \(f(1)\text{.}\) |
○ \(f(1)=-1⋅1^2+4⋅1-2=1\text{.}\) 1p |
|
Functiewaarde (2)
00np - Kwadratische functies - basis
|
Getal & Ruimte (13e editie) - 3 havo - 3.1 Getal & Ruimte (13e editie) - 3 vwo - 3.2 |
|
Gegeven is de functie \(f(x)=x^2-5x+2\text{.}\) Op de grafiek van \(f\) ligt het punt \(A\) met \(x_A=3\text{.}\) 1p Bereken \(y_a\text{.}\) |
○ \(y_a=f(3)=3^2-5⋅3+2=-4\text{.}\) 1p |
|
LigtPuntOpParabool
00nq - Kwadratische functies - basis
|
Getal & Ruimte (13e editie) - 3 havo - 3.1 Getal & Ruimte (13e editie) - 3 vwo - 3.2 |
|
Gegeven is de functie \(f(x)=4x^2-5x-3\text{.}\) 2p Controleer of het punt \(A(-2, 24)\) op de grafiek van \(f\) ligt. |
○ \(f(-2)=4⋅(-2)^2-5⋅-2-3=23≠24\text{.}\) 1p ○ Het punt \(A\) ligt niet op de grafiek van \(f\text{.}\) 1p |
|
SnijpuntenMetXasExact (1)
00jr - Kwadratische functies - basis
|
Getal & Ruimte (13e editie) - 3 havo - 3.3 Getal & Ruimte (13e editie) - 3 vwo - 3.2 |
|
Gegeven is de functie \(f(x)=x^2+8x-9\text{.}\) 3p Bereken exact de coördinaten van de snijpunten van de grafiek van \(f\) met de \(x\text{-}\)as. |
○ De snijpunten van de grafiek van \(f\) met de \(x\text{-}\)as volgen uit 1p ○ De som-productmethode geeft 1p ○ De snijpunten met de \(x\text{-}\)as zijn \((1, 0)\) en \((-9, 0)\text{.}\) 1p |
|
SnijpuntenMetXasExact (2)
00js - Kwadratische functies - basis
|
Getal & Ruimte (13e editie) - 3 havo - 7.2 Getal & Ruimte (13e editie) - 3 vwo - 3.5 |
|
Gegeven is de functie \(f(x)=3x^2-2x-21\text{.}\) 3p Bereken exact de coördinaten van de snijpunten van de grafiek van \(f\) met de \(x\text{-}\)as. |
○ De snijpunten van de grafiek van \(f\) met de \(x\text{-}\)as volgen uit 1p ○ De \(a\kern{-.8pt}b\kern{-.8pt}c\text{-}\)formule met \(D=(-2)^2-4⋅3⋅-21=256\) geeft 1p ○ De snijpunten met de \(x\text{-}\)as zijn \((-2\frac{1}{3}, 0)\) en \((3, 0)\text{.}\) 1p |
|
SnijpuntenMetXasGR
00nt - Kwadratische functies - basis - data pool: #132 (4ms)
|
Getal & Ruimte (13e editie) - havo wiskunde B - 1.5 |
|
Gegeven is de functie \(f(x)=2x^2-2x-1\text{.}\) 3p Bereken de coördinaten van de snijpunten van de grafiek van \(f\) met de \(x\text{-}\)as. |
○ De snijpunten van de grafiek van \(f\) met de \(x\text{-}\)as volgen uit 1p ○ Voer in 1p ○ De snijpunten met de \(x\text{-}\)as zijn \((-0{,}45; 0)\) en \((4{,}45; 0)\text{.}\) 1p |
|
SnijpuntMetYas
00jt - Kwadratische functies - basis
|
Getal & Ruimte (13e editie) - 3 havo - 3.3 Getal & Ruimte (13e editie) - 3 vwo - 3.2 |
|
Gegeven is de functie \(f(x)=x^2-7x+10\text{.}\) 2p Bereken exact de coördinaten van het snijpunt van de grafiek van \(f\) met de \(y\text{-}\)as. |
○ Het snijpunt van de grafiek van \(f\) met de \(y\text{-}\)as volgt uit 1p ○ Het snijpunt met de \(y\text{-}\)as is \((0, 10)\text{.}\) 1p |
|
TopVanParaboolExact
00ny - Kwadratische functies - basis - data pool: #472 (2ms)
|
Getal & Ruimte (13e editie) - havo wiskunde B - 4.2 |
|
Gegeven is de functie \(f(x)=x^2+2x-3\text{.}\) 2p Bereken exact de coördinaten van de top van de grafiek van \(f\text{.}\) |
○ \(x_{\text{top}}={-2 \over 2⋅1}=-1\) 1p ○ \(y_{\text{top}}=f(-1)=-4\text{,}\) dus top \((-1, -4)\text{.}\) 1p |
|
TopVanParaboolGR
00ns - Kwadratische functies - basis - data pool: #332 (2ms)
|
Getal & Ruimte (13e editie) - havo wiskunde B - 4.5 |
|
Gegeven is de functie \(f(x)=2x^2+5x+4\text{.}\) 2p Bereken de coördinaten van de top van de grafiek van \(f\text{.}\) |
○ Voer in 1p ○ De top van de grafiek van \(f\) is \((-1{,}25; 0{,}88)\text{.}\) 1p |