Logaritmen herleiden

23 - 6 oefeningen

Optellen (1)
00ku - basis - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

1p

a

\({}^{4}\!\log(2a)+{}^{4}\!\log(5a-1)\)

a

\({}^{4}\!\log(2a)+{}^{4}\!\log(5a-1)\)
\(\text{ }={}^{4}\!\log(2a⋅(5a-1))\)
\(\text{ }={}^{4}\!\log(10a^2-2a)\)

1p

Aftrekken
00kv - basis - eind - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

1p

a

\({}^{2}\!\log(4x)-{}^{2}\!\log(3x+1)\)

a

\({}^{2}\!\log(4x)-{}^{2}\!\log(3x+1)\)
\(\text{ }={}^{2}\!\log({4x \over 3x+1})\)

1p

Grondtal (1)
00ky - basis - midden - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

2p

a

\(3+{}^{4}\!\log(5p+2)\)

a

\(3+{}^{4}\!\log(5p+2)\)
\(\text{ }={}^{4}\!\log(4^3)+{}^{4}\!\log(5p+2)\)
\(\text{ }={}^{4}\!\log(64)+{}^{4}\!\log(5p+2)\)

1p

\(\text{ }={}^{4}\!\log(64⋅(5p+2))\)
\(\text{ }={}^{4}\!\log(320p+128)\)

1p

Vermenigvuldigen
00kw - basis - midden - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

2p

a

\(2⋅{}^{4}\!\log(a+1)\)

a

\(2⋅{}^{4}\!\log(a+1)\)
\(\text{ }={}^{4}\!\log((a+1)^2)\)

1p

\(\text{ }={}^{4}\!\log(a^2+2a+1)\)

1p

Grondtal (2)
00kz - basis - eind - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

3p

a

\({}^{2}\!\log(8)+{}^{4}\!\log(x-5)\)

a

\({}^{2}\!\log(8)+{}^{4}\!\log(x-5)\)
\(\text{ }={}^{2}\!\log(2^3)+{}^{4}\!\log(x-5)\)
\(\text{ }=3+{}^{4}\!\log(x-5)\)

1p

\(\text{ }={}^{4}\!\log(4^3)+{}^{4}\!\log(x-5)\)
\(\text{ }={}^{4}\!\log(64)+{}^{4}\!\log(x-5)\)

1p

\(\text{ }={}^{4}\!\log(64⋅(x-5))\)
\(\text{ }={}^{4}\!\log(64x-320)\)

1p

OptellenVermenigvuldigen
00kx - basis - eind - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

2p

a

\(3⋅{}^{4}\!\log(a)+{}^{4}\!\log(2a+5)\)

a

\(3⋅{}^{4}\!\log(a)+{}^{4}\!\log(2a+5)\)
\(\text{ }={}^{4}\!\log(a^3)+{}^{4}\!\log(2a+5)\)

1p

\(\text{ }={}^{4}\!\log(a^3⋅(2a+5))\)
\(\text{ }={}^{4}\!\log(2a^4+5a^3)\)

1p

00ku 00kv 00ky 00kw 00kz 00kx