Logaritmen herleiden

23 - 6 oefeningen

Optellen (1)
00ku - basis - basis - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

1p

a

\({}^{5}\!\log(2p)+{}^{5}\!\log(4p+1)\)

a

\({}^{5}\!\log(2p)+{}^{5}\!\log(4p+1)\)
\(\text{ }={}^{5}\!\log(2p⋅(4p+1))\)
\(\text{ }={}^{5}\!\log(8p^2+2p)\)

1p

Aftrekken
00kv - basis - eind - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

1p

a

\({}^{2}\!\log(3)-{}^{2}\!\log(4x+5)\)

a

\({}^{2}\!\log(3)-{}^{2}\!\log(4x+5)\)
\(\text{ }={}^{2}\!\log({3 \over 4x+5})\)

1p

Grondtal (1)
00ky - basis - midden - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

2p

a

\(2+{}^{5}\!\log(4a+1)\)

a

\(2+{}^{5}\!\log(4a+1)\)
\(\text{ }={}^{5}\!\log(5^2)+{}^{5}\!\log(4a+1)\)
\(\text{ }={}^{5}\!\log(25)+{}^{5}\!\log(4a+1)\)

1p

\(\text{ }={}^{5}\!\log(25⋅(4a+1))\)
\(\text{ }={}^{5}\!\log(100a+25)\)

1p

Vermenigvuldigen
00kw - basis - midden - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

2p

a

\(3⋅{}^{5}\!\log(2x)\)

a

\(3⋅{}^{5}\!\log(2x)\)
\(\text{ }={}^{5}\!\log((2x)^3)\)

1p

\(\text{ }={}^{5}\!\log(8x^3)\)

1p

Grondtal (2)
00kz - basis - eind - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

3p

a

\({}^{3}\!\log(81)+{}^{5}\!\log(a-2)\)

a

\({}^{3}\!\log(81)+{}^{5}\!\log(a-2)\)
\(\text{ }={}^{3}\!\log(3^4)+{}^{5}\!\log(a-2)\)
\(\text{ }=4+{}^{5}\!\log(a-2)\)

1p

\(\text{ }={}^{5}\!\log(5^4)+{}^{5}\!\log(a-2)\)
\(\text{ }={}^{5}\!\log(625)+{}^{5}\!\log(a-2)\)

1p

\(\text{ }={}^{5}\!\log(625⋅(a-2))\)
\(\text{ }={}^{5}\!\log(625a-1\,250)\)

1p

OptellenVermenigvuldigen
00kx - basis - eind - dynamic variables
Getal & Ruimte (12e editie) - havo wiskunde B - 9.3

Herleid tot één logaritme.

2p

a

\(2⋅{}^{5}\!\log(a)+{}^{5}\!\log(4a-1)\)

a

\(2⋅{}^{5}\!\log(a)+{}^{5}\!\log(4a-1)\)
\(\text{ }={}^{5}\!\log(a^2)+{}^{5}\!\log(4a-1)\)

1p

\(\text{ }={}^{5}\!\log(a^2⋅(4a-1))\)
\(\text{ }={}^{5}\!\log(4a^3-a^2)\)

1p

00ku 00kv 00ky 00kw 00kz 00kx