Procentrekenen
0f - 15 oefeningen
Groei_BerekenNieuwBijAfname
0028 - basis
|
Getal & Ruimte (13e editie) - 2 havo/vwo - 4.1 Getal & Ruimte (13e editie) - 2 vwo - 4.1 |
2p a In de 5e klas van een middelbare school was het aantal leerlingen met een CM-profiel in 2020 gelijk aan \(30\text{.}\) Tussen 2020 en 2023 is dit afgenomen met \(12{,}8\%\text{.}\) |
a \(100\%-12{,}8\%=87{,}2\%\text{,}\) dus de groeifactor is \(0{,}872\) 1p Het aantal leerlingen met een CM-profiel in 2023 was dus \(0{,}872⋅30≈26\) 1p |
Groei_BerekenNieuwBijToename
001z - basis
|
Getal & Ruimte (13e editie) - 2 havo/vwo - 4.1 Getal & Ruimte (13e editie) - 2 vwo - 4.1 |
2p a In de bibliotheek was het aantal boeken in de categorie science fiction in 2022 gelijk aan \(2\,066\text{.}\) Tussen 2022 en 2023 is dit toegenomen met \(9{,}9\%\text{.}\) |
a \(100\%+9{,}9\%=109{,}9\%\text{,}\) dus de groeifactor is \(1{,}099\) 1p Het aantal boeken in de categorie science fiction in 2023 was dus \(1{,}099⋅2\,066≈2\,271\) 1p |
Groei_BerekenOudBijAfname
0029 - basis
|
Getal & Ruimte (13e editie) - 3 havo - 4.2 Getal & Ruimte (13e editie) - 3 vwo - 4.1 |
2p a Op de begroting van de Nederlandse overheid was het budget voor justitie en veiligheid in 2023 gelijk aan \(10{,}6\text{ miljard}\text{.}\) Tussen 2021 en 2023 is dit afgenomen met \(14{,}9\%\text{.}\) |
a \(100\%-14{,}9\%=85{,}1\%\text{,}\) dus de groeifactor is \(0{,}851\) 1p Er geldt \(0{,}851⋅\text{OUD}=10{,}6\text{ miljard}\) 1p |
Groei_BerekenOudBijToename
0020 - basis
|
Getal & Ruimte (13e editie) - 3 havo - 4.2 Getal & Ruimte (13e editie) - 3 vwo - 4.1 |
2p a In de Nederlandse bossen was het aantal kastanjebomen in 2023 gelijk aan \(6{,}12\text{ miljoen}\text{.}\) Tussen 2020 en 2023 is dit toegenomen met \(15{,}3\%\text{.}\) |
a \(100\%+15{,}3\%=115{,}3\%\text{,}\) dus de groeifactor is \(1{,}153\) 1p Er geldt \(1{,}153⋅\text{OUD}=6{,}12\text{ miljoen}\) 1p |
Groei_BerekenPercentageBijAfname
0021 - basis
|
Getal & Ruimte (13e editie) - 2 havo/vwo - 4.2 Getal & Ruimte (13e editie) - 2 vwo - 4.2 |
2p a Op de Nederlandse wegen is het aantal benzineauto's afgenomen van \(3{,}55\text{ miljoen}\) in 2022 tot \(3{,}17\text{ miljoen}\) in 2023. |
a \({\text{NIEUW}-\text{OUD} \over \text{OUD}}⋅100\%={3{,}17\text{ miljoen}-3{,}55\text{ miljoen} \over 3{,}55\text{ miljoen}}⋅100\%≈-10{,}7\%\text{.}\) 1p Dus de procentuele afname is \(10{,}7\%\text{.}\) 1p |
Groei_BerekenPercentageBijToename
001y - basis
|
Getal & Ruimte (13e editie) - 2 havo/vwo - 4.2 Getal & Ruimte (13e editie) - 2 vwo - 4.2 |
2p a Op de Playstation is het aantal spelers van de game Assassins Creed toegenomen van \(7{,}57\text{ miljoen}\) in 2019 tot \(8{,}78\text{ miljoen}\) in 2022. |
a \({\text{NIEUW}-\text{OUD} \over \text{OUD}}⋅100\%={8{,}78\text{ miljoen}-7{,}57\text{ miljoen} \over 7{,}57\text{ miljoen}}⋅100\%≈16{,}0\%\text{.}\) 1p Dus de procentuele toename is \(16{,}0\%\text{.}\) 1p |
Groepen_BerekenNieuwBijHoger
0026 - basis
|
Getal & Ruimte (12e editie) - havo wiskunde A - 1.1 Getal & Ruimte (13e editie) - havo wiskunde A - 1.2 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.3 |
2p a In de stad Utrecht was het aantal leden van dansscholen in 2024 gelijk aan \(4\,549\text{.}\) Het aantal leden van atletiekverenigingen was dat jaar \(7{,}8\%\) hoger. |
a \(100\%+7{,}8\%=107{,}8\%\text{,}\) dus de factor is \(1{,}078\) 1p Dus het aantal leden van atletiekverenigingen is \(1{,}078⋅4\,549≈4\,904\) 1p |
Groepen_BerekenNieuwBijLager
002b - basis
|
Getal & Ruimte (12e editie) - havo wiskunde A - 1.1 Getal & Ruimte (13e editie) - havo wiskunde A - 1.2 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.3 |
2p a Onder middelbare scholieren was het aantal liefhebbers van jazz muziek in 2022 gelijk aan \(90\,923\text{.}\) Het aantal liefhebbers van hiphop muziek was dat jaar \(15{,}8\%\) lager. |
a \(100\%-15{,}8\%=84{,}2\%\text{,}\) dus de factor is \(0{,}842\) 1p Dus het aantal liefhebbers van hiphop muziek is \(0{,}842⋅90\,923≈76\,557\) 1p |
Groepen_BerekenOudBijHoger
0027 - basis
|
Getal & Ruimte (12e editie) - havo wiskunde A - 1.1 Getal & Ruimte (13e editie) - havo wiskunde A - 1.2 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.3 |
2p a Op basisscholen was in 2022 het aantal kleuters met een giraffe als lievelingsdier \(12{,}1\%\) hoger dan het aantal kleuters met een poes als lievelingsdier. Het aantal kleuters met een giraffe als lievelingsdier was dat jaar \(2\,779\text{.}\) |
a \(100\%+12{,}1\%=112{,}1\%\text{,}\) dus de factor is \(1{,}121\) 1p Er geldt \(1{,}121⋅\text{poes}=2\,779\) 1p |
Groepen_BerekenOudBijLager
002c - basis
|
Getal & Ruimte (12e editie) - havo wiskunde A - 1.1 Getal & Ruimte (13e editie) - 3 vwo - 4.1 Getal & Ruimte (13e editie) - havo wiskunde A - 1.2 |
2p a Op Zweinstein zijn er vier afdelingen, namelijk Griffoendor, Ravenklauw, Huffelpuf en Zwadderich. In Nederland was in 2024 het aantal fans dat zich identificeert met Ravenklauw \(15{,}7\%\) lager dan het aantal fans dat zich identificeert met Zwadderich. Het aantal fans dat zich identificeert met Ravenklauw was dat jaar \(126\text{ duizend}\text{.}\) |
a \(100\%-15{,}7\%=84{,}3\%\text{,}\) dus de factor is \(0{,}843\) 1p Er geldt \(0{,}843⋅\text{Zwadderich}=126\text{ duizend}\) 1p |
Groepen_BerekenPercentageBijHoger
0025 - basis
|
Getal & Ruimte (12e editie) - havo wiskunde A - 1.1 Getal & Ruimte (13e editie) - 3 vwo - 4.1 Getal & Ruimte (13e editie) - havo wiskunde A - 1.2 |
2p a Op de populaire app TikTok was het aantal gebruikers tussen 20 en 30 jaar in 2024 gelijk aan \(331{,}4\text{ miljoen}\text{,}\) terwijl het aantal gebruikers jonger dan 20 jaar \(365{,}5\text{ miljoen}\) was. |
a \({\text{jonger dan 20}-\text{tussen 20 en 30} \over \text{tussen 20 en 30}}⋅100\%={365{,}5\text{ miljoen}-331{,}4\text{ miljoen} \over 331{,}4\text{ miljoen}}⋅100\%≈10{,}3\%\text{.}\) 1p Het aantal gebruikers jonger dan 20 jaar was in 2024 dus \(10{,}3\%\) hoger dan het aantal gebruikers tussen 20 en 30 jaar. 1p |
Groepen_BerekenPercentageBijLager
002a - basis
|
Getal & Ruimte (12e editie) - havo wiskunde A - 1.1 Getal & Ruimte (13e editie) - havo wiskunde A - 1.2 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.3 |
2p a Tijdens carnaval, het grootste volksfeest van Nederland, was het aantal feestvierders verkleed als zeemeermin in 2022 gelijk aan \(38\text{ duizend}\text{,}\) terwijl het aantal feestvierders verkleed als Darth Vader \(33\text{ duizend}\) was. |
a \({\text{Darth Vader}-\text{zeemeermin} \over \text{zeemeermin}}⋅100\%={33\text{ duizend}-38\text{ duizend} \over 38\text{ duizend}}⋅100\%≈-13{,}2\%\text{.}\) 1p Het aantal feestvierders verkleed als Darth Vader was in 2022 dus \(13{,}2\%\) lager dan het aantal feestvierders verkleed als zeemeermin. 1p |
Proportie_BerekenDeel
0023 - basis
|
Getal & Ruimte (13e editie) - 1 havo/vwo - 4.4 Getal & Ruimte (13e editie) - 1 vwo - 4.4 |
2p a In de zomervakantie was het totale aantal Nederlandse vakantiegangers in 2022 gelijk aan \(5\,755\text{ duizend}\text{.}\) Daarvan was het aantal reizigers naar Scandinavië \(11{,}3\%\text{.}\) |
a \(11{,}3\%\) van \(5\,755\text{ duizend}\) is \(0{,}113⋅5\,755\text{ duizend}≈650\text{ duizend}\text{.}\) 1p Het aantal reizigers naar Scandinavië in 2022 was dus \(650\text{ duizend}\text{.}\) 1p |
Proportie_BerekenPercentage
0022 - basis
|
Getal & Ruimte (13e editie) - 1 havo/vwo - 4.4 Getal & Ruimte (13e editie) - 1 vwo - 4.4 |
2p a Bij de gemeenteraadsverkiezingen was het totaal aantal stemmen in 2022 gelijk aan \(276\,113\text{.}\) In dat jaar was het aantal stemmen op het CDA \(31\,608\text{.}\) |
a \({31\,608 \over 276\,113}⋅100\%≈11{,}4\%\text{.}\) 1p Dat is dus \(11{,}4\%\) van het totaal aantal stemmen. 1p |
Proportie_BerekenTotaal
0024 - basis
|
Getal & Ruimte (13e editie) - 3 havo - 4.2 Getal & Ruimte (13e editie) - 3 vwo - 4.1 |
2p a In de eredivisie was het aantal supporters van FC Utrecht in 2023 gelijk aan \(150\text{ duizend}\text{.}\) Dit was \(8{,}8\%\) van het totale aantal supporters. |
a \(8{,}8\%\) van het totaal is \(150\text{ duizend}\text{,}\) dus \(0{,}088⋅\text{totaal}=150\text{ duizend}\text{.}\) 1p Het totale aantal supporters is dus gelijk aan \({150\text{ duizend} \over 0{,}088}≈1\,705\text{ duizend}\text{.}\) 1p |