Rijtjes en roosters

1g - 7 oefeningen

Aantal (1)
00gg - Rijtjes en roosters - basis - basis - 1ms
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3

1p

Een slinger bestaat uit \(3\) vlaggetjes die elk rood of blauw zijn. Hoeveel verschillende slingers kun je maken \(2\) rode vlaggetjes?

\(\text{aantal}=\binom{3}{2}=3\)

1p

Aantal (2)
00gh - Rijtjes en roosters - basis - basis - 0ms
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3

1p

Sara maakt een letterrijtje van A's en B's. Hoeveel rijtjes zijn er mogelijk met \(3\) A's en \(5\) B's?

\(\text{aantal}=\binom{3+5}{3}=56\)

1p

Totaal
00gi - Rijtjes en roosters - basis - basis - 0ms
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3

1p

Beertje Pol eet \(10\) pannenkoeken, sommigen met met appel en de rest met spek. Op hoeveel verschillende volgordes kan hij deze eten?

\(\text{aantal}=2^{10}=1\,024\)

1p

Somregel
00gj - Rijtjes en roosters - gevorderd - eind - 1ms
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3

2p

Willem gooit \(10\) keer met een muntstuk. Hoeveel mogelijkheden zijn er om minstens \(8\) keer munt te gooien?

Minstens \(8\) wil zeggen \(8\text{,}\) \(9\) of \(10\text{.}\)

1p

\(\text{aantal}=\binom{10}{8}+\binom{10}{9}+\binom{10}{10}=56\)

1p

Rooster (1)
00gk - Rijtjes en roosters - basis - basis - 0ms
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3
AB

1p

Hoeveel kortste routes gaan er van \(A\) naar \(B\text{?}\)

\(3\) stappen naar rechts en \(5\) stappen omhoog, dus
\(\text{aantal}=\binom{8}{3}=56\)

1p

Rooster (2)
00gl - Rijtjes en roosters - gevorderd - midden - 0ms
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3
ABP

2p

Hoeveel kortste routes gaan er van \(A\) naar \(B\) via \(P\text{?}\)

Het aantal kortste routes van \(A\) naar \(P\) is \(\binom{9}{4}\) en het aantal kortste routes van \(P\) naar \(B\) is \(\binom{13}{6}\text{.}\)

1p

\(\text{aantal}=\binom{9}{4}⋅\binom{13}{6}=216\,216\)

1p

Rooster (3)
00gm - Rijtjes en roosters - pro - eind - 0ms
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3
ABP

3p

Hoeveel kortste routes gaan er van \(A\) naar \(B\) niet via \(P\text{?}\)

Het aantal kortste routes van \(A\) naar \(B\) via \(P\) is \(\binom{7}{4}⋅\binom{7}{5}\text{.}\)

1p

Het totale aantal kortste routes van \(A\) naar \(B\) is \(\binom{14}{9}\text{.}\)

1p

\(\text{aantal}=\binom{14}{9}-\binom{7}{4}⋅\binom{7}{5}=1\,267\)

1p

00gg 00gh 00gi 00gj 00gk 00gl 00gm