Rijtjes en roosters
1g - 7 oefeningen
|
Aantal (1)
00gg - Rijtjes en roosters - basis - basis - 1ms
|
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 |
|
1p Bij een wedstrijd zijn in totaal \(7\) doelpunten gemaakt, waarvan team A \(4\) keer scoorde. Hoeveel mogelijke scoreverlopen zijn er? |
○ \(\text{aantal}=\binom{7}{4}=35\) 1p |
|
Aantal (2)
00gh - Rijtjes en roosters - basis - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 |
|
1p Een morsecode bestaat uit een reeks korte en lange signalen. Hoeveel verschillende codes van zijn er mogelijk met \(2\) korte en \(3\) lange signalen? |
○ \(\text{aantal}=\binom{2+3}{2}=10\) 1p |
|
Totaal
00gi - Rijtjes en roosters - basis - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 |
|
1p Een slinger bestaat uit \(5\) vlaggetjes die elk rood of blauw zijn. Hoeveel verschillende slingers zijn er mogelijk? |
○ \(\text{aantal}=2^5=32\) 1p |
|
Somregel
00gj - Rijtjes en roosters - gevorderd - eind - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 |
|
2p Willem gooit \(5\) keer met een muntstuk. Hoeveel mogelijkheden zijn er om hoogstens \(2\) keer munt te gooien? |
○ Hoogstens \(2\) wil zeggen \(0\text{,}\) \(1\) of \(2\text{.}\) 1p ○ \(\text{aantal}=\binom{5}{0}+\binom{5}{1}+\binom{5}{2}=16\) 1p |
|
Rooster (1)
00gk - Rijtjes en roosters - basis - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 |
|
1p Hoeveel kortste routes gaan er van \(A\) naar \(B\text{?}\) |
○ \(6\) stappen naar rechts en \(7\) stappen omhoog, dus 1p |
|
Rooster (2)
00gl - Rijtjes en roosters - gevorderd - midden - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 |
|
2p Hoeveel kortste routes gaan er van \(A\) naar \(B\) via \(P\text{?}\) |
○ Het aantal kortste routes van \(A\) naar \(P\) is \(\binom{10}{3}\) en het aantal kortste routes van \(P\) naar \(B\) is \(\binom{11}{6}\text{.}\) 1p ○ \(\text{aantal}=\binom{10}{3}⋅\binom{11}{6}=55\,440\) 1p |
|
Rooster (3)
00gm - Rijtjes en roosters - pro - eind - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (12e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - havo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 4.3 |
|
3p Hoeveel kortste routes gaan er van \(A\) naar \(B\) niet via \(P\text{?}\) |
○ Het aantal kortste routes van \(A\) naar \(B\) via \(P\) is \(\binom{10}{4}⋅\binom{7}{2}\text{.}\) 1p ○ Het totale aantal kortste routes van \(A\) naar \(B\) is \(\binom{17}{6}\text{.}\) 1p ○ \(\text{aantal}=\binom{17}{6}-\binom{10}{4}⋅\binom{7}{2}=7\,966\) 1p |