Sinus, cosinus en tangens
14 - 9 oefeningen
|
Cosinus (1)
007j - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=51\text{,}\) \(\angle A=31\degree\) en \(\angle B=90\degree\text{.}\) |
○ Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle A)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\cos(31\degree)={A\kern{-.8pt}B \over 51}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B=51⋅\cos(31\degree)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈43{,}7\text{.}\) 1p |
|
Cosinus (2)
007k - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=57\text{,}\) \(\angle C=43\degree\) en \(\angle A=90\degree\text{.}\) |
○ Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle C)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\cos(43\degree)={57 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={57 \over \cos(43\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈77{,}9\text{.}\) 1p |
|
Cosinus (3)
007l - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=22\text{,}\) \(A\kern{-.8pt}C=53\) en \(\angle B=90\degree\text{.}\) |
○ Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle A)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\cos(\angle A)={22 \over 53}\text{.}\) 1p ○ Hieruit volgt \(\angle A=\cos^{-1}({22 \over 53})\text{.}\) 1p ○ Dus \(\angle A≈65{,}5\degree\text{.}\) 1p |
|
Sinus (1)
007g - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=45\text{,}\) \(\angle K=46\degree\) en \(\angle L=90\degree\text{.}\) |
○ Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle K)={L\kern{-.8pt}M \over K\kern{-.8pt}M}\) ofwel \(\sin(46\degree)={L\kern{-.8pt}M \over 45}\text{.}\) 1p ○ Hieruit volgt \(L\kern{-.8pt}M=45⋅\sin(46\degree)\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M≈32{,}4\text{.}\) 1p |
|
Sinus (2)
007h - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=28\text{,}\) \(\angle B=42\degree\) en \(\angle C=90\degree\text{.}\) |
○ Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle B)={A\kern{-.8pt}C \over A\kern{-.8pt}B}\) ofwel \(\sin(42\degree)={28 \over A\kern{-.8pt}B}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B={28 \over \sin(42\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈41{,}8\text{.}\) 1p |
|
Sinus (3)
007i - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=51\text{,}\) \(P\kern{-.8pt}Q=71\) en \(\angle R=90\degree\text{.}\) |
○ Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle Q)={P\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\sin(\angle Q)={51 \over 71}\text{.}\) 1p ○ Hieruit volgt \(\angle Q=\sin^{-1}({51 \over 71})\text{.}\) 1p ○ Dus \(\angle Q≈45{,}9\degree\text{.}\) 1p |
|
Tangens (1)
007m - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=60\text{,}\) \(\angle A=36\degree\) en \(\angle B=90\degree\text{.}\) |
○ Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle A)={B\kern{-.8pt}C \over A\kern{-.8pt}B}\) ofwel \(\tan(36\degree)={B\kern{-.8pt}C \over 60}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C=60⋅\tan(36\degree)\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈43{,}6\text{.}\) 1p |
|
Tangens (2)
007n - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=50\text{,}\) \(\angle B=51\degree\) en \(\angle C=90\degree\text{.}\) |
○ Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle B)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\tan(51\degree)={50 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={50 \over \tan(51\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈40{,}5\text{.}\) 1p |
|
Tangens (3)
007o - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=32\text{,}\) \(K\kern{-.8pt}M=51\) en \(\angle M=90\degree\text{.}\) |
○ Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle L)={K\kern{-.8pt}M \over L\kern{-.8pt}M}\) ofwel \(\tan(\angle L)={51 \over 32}\text{.}\) 1p ○ Hieruit volgt \(\angle L=\tan^{-1}({51 \over 32})\text{.}\) 1p ○ Dus \(\angle L≈57{,}9\degree\text{.}\) 1p |