Sinus, cosinus en tangens
14 - 9 oefeningen
|
Cosinus (1)
007j - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=76\text{,}\) \(\angle A=43\degree\) en \(\angle B=90\degree\text{.}\) |
○ Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle A)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\cos(43\degree)={A\kern{-.8pt}B \over 76}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B=76⋅\cos(43\degree)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈55{,}6\text{.}\) 1p |
|
Cosinus (2)
007k - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=25\text{,}\) \(\angle L=31\degree\) en \(\angle M=90\degree\text{.}\) |
○ Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle L)={L\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\cos(31\degree)={25 \over K\kern{-.8pt}L}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L={25 \over \cos(31\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈29{,}2\text{.}\) 1p |
|
Cosinus (3)
007l - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=23\text{,}\) \(P\kern{-.8pt}R=33\) en \(\angle Q=90\degree\text{.}\) |
○ Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle P)={P\kern{-.8pt}Q \over P\kern{-.8pt}R}\) ofwel \(\cos(\angle P)={23 \over 33}\text{.}\) 1p ○ Hieruit volgt \(\angle P=\cos^{-1}({23 \over 33})\text{.}\) 1p ○ Dus \(\angle P≈45{,}8\degree\text{.}\) 1p |
|
Sinus (1)
007g - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=64\text{,}\) \(\angle P=54\degree\) en \(\angle Q=90\degree\text{.}\) |
○ Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}R}\) ofwel \(\sin(54\degree)={Q\kern{-.8pt}R \over 64}\text{.}\) 1p ○ Hieruit volgt \(Q\kern{-.8pt}R=64⋅\sin(54\degree)\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R≈51{,}8\text{.}\) 1p |
|
Sinus (2)
007h - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=22\text{,}\) \(\angle A=40\degree\) en \(\angle B=90\degree\text{.}\) |
○ Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle A)={B\kern{-.8pt}C \over A\kern{-.8pt}C}\) ofwel \(\sin(40\degree)={22 \over A\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}C={22 \over \sin(40\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C≈34{,}2\text{.}\) 1p |
|
Sinus (3)
007i - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=52\text{,}\) \(L\kern{-.8pt}M=68\) en \(\angle K=90\degree\text{.}\) |
○ Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle M)={K\kern{-.8pt}L \over L\kern{-.8pt}M}\) ofwel \(\sin(\angle M)={52 \over 68}\text{.}\) 1p ○ Hieruit volgt \(\angle M=\sin^{-1}({52 \over 68})\text{.}\) 1p ○ Dus \(\angle M≈49{,}9\degree\text{.}\) 1p |
|
Tangens (1)
007m - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=43\text{,}\) \(\angle P=51\degree\) en \(\angle Q=90\degree\text{.}\) |
○ Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\tan(51\degree)={Q\kern{-.8pt}R \over 43}\text{.}\) 1p ○ Hieruit volgt \(Q\kern{-.8pt}R=43⋅\tan(51\degree)\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R≈53{,}1\text{.}\) 1p |
|
Tangens (2)
007n - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=31\text{,}\) \(\angle M=57\degree\) en \(\angle K=90\degree\text{.}\) |
○ Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle M)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\tan(57\degree)={31 \over K\kern{-.8pt}M}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M={31 \over \tan(57\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈20{,}1\text{.}\) 1p |
|
Tangens (3)
007o - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=33\text{,}\) \(Q\kern{-.8pt}R=24\) en \(\angle Q=90\degree\text{.}\) |
○ Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\tan(\angle P)={24 \over 33}\text{.}\) 1p ○ Hieruit volgt \(\angle P=\tan^{-1}({24 \over 33})\text{.}\) 1p ○ Dus \(\angle P≈36{,}0\degree\text{.}\) 1p |